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Abstract—This review explores the application of 

reinforcement learning in multi-robot task allocation within the 

logistics field. With the advancement of technology, intelligent 

robots are increasingly being utilized across various industries, 

particularly in complex tasks and diverse environments where 

multi-robot systems exhibit significant advantages over single-

robot systems. Task allocation is a critical component in multi-

robot systems. This paper introduces the necessity of multi-

robot task allocation, its applications in different domains, and 

the challenges faced. Traditional algorithms such as linear 

programming, heuristic search, and swarm intelligence each 

have their strengths and weaknesses, but they show limitations 

in dynamic and complex environments. Reinforcement 

learning, due to its self-learning capability and interaction with 

the environment, has become a research hotspot. Through 

continuous exploration and feedback adjustment, 

reinforcement learning algorithms in multi-robot task 

allocation gradually approach optimal solutions, demonstrating 

great potential in this field. Future research in reinforcement 

learning should focus on lifelong learning algorithms to 

enhance the efficiency of multi-robot task allocation systems in 

complex and dynamic logistics and warehousing environments. 

Keywords—Multi-Robot Systems, Task Allocation, Deep 

Reinforcement Learning  

I. INTRODUCTION  

With the rapid development of the social economy, the use 
of intelligent robots is gradually permeating various aspects of 
people's lives, bringing significant changes to our daily life and 
work. As technology advances, intelligent robots are 
increasingly applied across various fields, driving future 
development. From automated production lines in 
manufacturing to precision surgery in the medical field, and to 
efficient delivery and intelligent warehousing in logistics, these 
applications of intelligent robots are diversely transforming our 
lives. 

A. The Emergence of Multi-Robot Systems 

As tasks become increasingly complex and varied, single 

robots are finding it challenging to cope with more intricate 

engineering projects, leading to the emergence of multi-robot 

systems. The application of multi-robot systems is 

spearheading new trends in intelligence and automation. Multi-

robot systems are no longer isolated individual robots but are 

coordinated teams that can collectively accomplish more 

complex and diverse tasks. This trend is evident across various 

industries, from manufacturing and emergency response to 

agricultural production and space exploration[1]. 

B. The Necessity of Multi-Robot Task Allocation 

The application potential of robot systems is limitless, with 

task allocation being a critical component. Multi-robot task 

allocation refers to assigning multiple robots or drones to 

specific tasks or sets of tasks in an optimal or suboptimal 

manner. This task allocation can be static (where the attributes 

of tasks and robots do not change over time) or dynamic 

(where the attributes of tasks and robots may change over time). 

The goals of multi-robot task allocation typically include 

maximizing task completion efficiency, minimizing overall 

costs, minimizing task completion time, or achieving other 

specific performance metrics. In different industries, tasks can 

be highly varied[2]. 

C. Multi-Robot Task Allocation in Various Industries 

In the industrial manufacturing sector, multi-robot task 

allocation has become critical for enhancing production 

efficiency and quality. Teams of robots in factories can work 

collaboratively to automatically complete tasks such as 

assembly, processing, and inspection, thereby reducing human 

errors and labor intensity while increasing production line 

efficiency. This not only saves time and resources but also 

creates more competitive advantages for enterprises[3]. 

In the logistics and warehousing sector, multi-robot task 

allocation is improving supply chain management and order 

processing. Robots in automated warehouses can efficiently 

transport and store goods, automatically selecting the optimal 

paths according to order requirements, reducing traffic 

congestion and delays. This translates to faster delivery speeds, 

lower operational costs, and more efficient logistics 

services[4][5]. 

Additionally, multi-robot task allocation is being applied in 

search and rescue, medical surgery, agriculture, and 

environmental monitoring. In emergency rescues, drones can 

work alongside ground robots to quickly search disaster areas, 

locate trapped individuals, and provide rescuers with critical 

information about the disaster zone[6]. In agriculture and 

agricultural automation, multi-robots can be used for tasks 

such as planting, harvesting, and weeding[7]. 

D. Challenges in Multi-Robot Task Allocation 

Multi-robot task allocation is a complex issue because it 

requires consideration of the characteristics of the robots, the 

nature of the tasks, environmental conditions, and various 

constraints. In practical applications, the cost of tasks is 

affected by the accuracy and timeliness of the multi-robot task 

allocation algorithms. Furthermore, the efficiency of 

production and the safety of personnel can also be impacted. 

Therefore, multi-robot task allocation algorithms have high 

research value and broad application prospects. In recent years, 

with the continuous development and improvement of robotics 

technology and intelligence, many experts and scholars at 

home and abroad have conducted extensive research on this 

issue[8]. They have been discovering new algorithm models 

and optimizing task allocation strategies to continuously 

improve the collaborative capabilities of multi-robot systems. 

Multi-robot task allocation problems are classified as NP-

hard problems. In complex and dynamic environments, finding 

the optimal task allocation solution requires searching through 

a vast solution space, which is difficult to accomplish within a 
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limited time frame. This characteristic makes multi-robot task 

allocation a challenging research area. To address this issue, 

experts and scholars worldwide have proposed various 

algorithms. The contract net protocol simulates the bidding 

mechanism in a market economy to achieve task allocation 

among robots[9]; the fireworks algorithm draws inspiration 

from the randomness of fireworks explosions to search for 

optimal solutions in the solution space[10]; distributed 

algorithms enhance the response speed of multi-robot systems 

through decentralized computation and decision-making[11]; 

the responsibility domain algorithm simplifies the task 

allocation process by assigning specific responsibility areas to 

each robot[12]; and genetic algorithms simulate the 

mechanisms of genetic inheritance and mutation in biological 

evolution to continuously optimize solutions through 

iterations[13]. 

However, these algorithms have certain limitations in 

solving robot task allocation problems. Specifically, genetic 

algorithms often result in local optimal solutions due to 

insufficient exploration of the solution space. 

E. Reinforcement Learning for Multi-Robot Task Allocation 

Reinforcement Learning (RL) is an important research 

method in machine learning and has been successfully applied 

to various fields of multi-robot task allocation. By 

continuously exploring the environment and using feedback 

from the environment to update, reinforcement learning 

algorithms promote convergence to optimal solutions[14][15]. 

Compared to other algorithms, reinforcement learning excels in 

multi-robot task allocation due to its ability to interact with the 

environment and adapt to complex and dynamic settings. 

Previous research has shown that reinforcement learning has 

already achieved significant results in the field of multi-robot 

task allocation[16][17]. 

In summary, the application of reinforcement learning in 

multi-robot warehousing scheduling not only enhances 

efficiency and reduces costs but also improves the system's 

intelligence and adaptability. This enables it to effectively cope 

with complex and dynamic warehousing environments, 

meeting the evolving demands of logistics. Consequently,  

reinforcement learning becomes an indispensable tool in the 

warehousing industry. 

II. MULTI-ROBOT TASK ALLOCATION METHODS 

In recent years, the rapid development of science and 

technology has driven many researchers, both domestically and 

internationally, to delve into the field of multi-robot task 

allocation. This research direction has evolved from initial 

theoretical exploration to practical applications in the real 

world, presenting a diverse landscape. Meanwhile, the 

continuous advancements and innovations in swarm 

intelligence algorithms, evolutionary algorithms, and machine 

learning algorithms have introduced new development 

directions for multi-robot task allocation algorithms. The 

multi-robot task allocation problem (MRTA) can be 

specifically divided into the following aspects: linear 

programming-based MRTA methods, heuristic search-based 

MRTA methods, swarm intelligence-based MRTA methods, 

and reinforcement learning-based MRTA methods. 

A. Linear Programming-Based MRTA Algorithms 

Linear programming-based MRTA algorithms are classic 

approaches to handling combinatorial optimization problems. 

These methods abstract complex real-world problems into 

matrix problems, providing an effective pathway for solving 

various combinatorial optimization challenges. By using linear 

programming algorithms, we can transform the complexity of 

multi-robot task planning into a form of mathematical 

computation. In this traditional domain, classic solutions 

include the Hungarian algorithm and mixed-integer linear 

programming (MILP) algorithms. The study in [18] uses a 

mixed-integer linear programming formula to optimize human-

multi-robot task allocation problems. By minimizing the total 

execution time, this approach optimizes task allocation, task 

quality, and the workload of both humans and robots, allowing 

for online monitoring and task redistribution. This further 

extends to solve human-multi-robot task allocation problems in 

the multi-robot task allocation domain. Smriti Chopra from the 

Georgia Institute of Technology's School of Electrical and 

Computer Engineering proposed a Hungarian algorithm to 

address multi-robot task allocation problems. In this algorithm, 

each robot runs a local program to handle specific sub-steps of 

the Hungarian algorithm and exchanges solution estimates with 

neighboring robots. Through a finite number of local 

computations and communications, all robots eventually 

converge to a common optimal task allocation scheme. This 

algorithm can achieve convergence within a limited time or 

within a finite number of communication rounds during 

synchronization [19]. 

However, as the complexity of the problem increases, using 

linear programming methods to solve multi-robot task 

allocation problems leads to a significant increase in 

computation time and does not guarantee the optimal solution, 

thus presenting a dual challenge: computational efficiency and 

result quality. 

B. Heuristic Search-Based MRTA Algorithms 

Heuristic search-based MRTA algorithms use accumulated 

system experience to guide subsequent algorithm choices, 

effectively enhancing spatial exploration efficiency and 

significantly reducing algorithm convergence time. The core 

process of heuristic search methods typically starts from a set 

of randomly generated feasible solutions and then uses 

information from these feasible solutions to guide the iterative 

process of the algorithm, gradually approaching the optimal 

solution. Compared to linear programming methods, heuristic 

searches can find a near-global optimal solution at an 

acceptable computational cost when handling large-scale 

combinatorial optimization problems, and this approximate 

solution is usually feasible in practical applications. 

The study in [20] introduced an innovative method based on 

simulated annealing to coordinate the attack actions of drone 

swarms. This method successfully overcame premature 

convergence issues in particle swarm optimization algorithms, 

achieving optimal resource allocation for the drone swarm. To 

further enhance the global search capability of the algorithm 

and quickly reach the optimal solution, researcher Li Zhenping 

and colleagues applied a tabu search algorithm in the 

distribution vehicle domain. By applying a variable 

neighborhood tabu search algorithm to improve the initial 

solution, they successfully obtained a near-optimal solution 

[21]. Artificial immune algorithms can continuously search for 

the global optimal solution without requiring advanced 

conditions such as target function differentiability. In [22], a 

method was proposed to solve resource allocation problems in 

variable power distribution systems using artificial immune 

algorithms. From a practical application perspective, heuristic 

search-based multi-robot task allocation methods can generally 

meet the needs of various application scenarios. Researchers 

worldwide are dedicated to finding ways to make the task 
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allocation results obtained by heuristic searches closer to the 

optimal solution. 

However, heuristic searches do not rely on strict 

mathematical formulas to guarantee finding the global optimal 

solution; they can only quickly discover a set of locally optimal 

solutions. In complex real-world environments, these locally 

optimal solutions are often sufficient to approximate the global 

optimal solution. 

C. Swarm Intelligence-Based MRTA Methods 

Swarm intelligence-based MRTA methods are also a type of 

heuristic search. The concept of swarm intelligence algorithms 

is inspired by various group behaviors in the biological world, 

simulating the information transfer methods within biological 

populations to find the optimal allocation schemes for the 

group. The study in [23] proposed a multi-UAV (FIAM) task 

allocation algorithm inspired by fish behavior, simulating 

behaviors such as fish aggregation, leader following, and 

forgetting, to achieve autonomous and adaptive task allocation, 

particularly suitable for search and rescue missions. Compared 

to other multi-robot task allocation methods, FIAM has the 

advantages of adaptability and autonomous decision-making, 

enabling it to execute search and rescue tasks in hostile 

environments. The study compared FIAM with traditional 

methods through simulated search and rescue missions, 

showing that FIAM significantly outperformed in survivor 

rescue rates, task completion times, and operational times. 

Particle swarm optimization (PSO) algorithms guide 

particles towards the system's optimal solution by leveraging 

the best solutions within the group, social experiences, and 

individual experiences, offering the advantages of easy 

parameter settings and simple operation. In [24], researchers 

proposed an improved particle swarm optimization algorithm 

successfully applied to spatial crowdsourcing task allocation 

problems, thereby improving task allocation efficiency. In 

recent years, experts worldwide have gradually drawn 

inspiration from biological group behaviors to develop swarm 

intelligence algorithms suitable for various application 

scenarios. These algorithms provide innovative solutions, 

particularly in the field of multi-robot task allocation, 

compensating for the shortcomings of traditional technologies 

and achieving significant results in practical applications. 

However, swarm intelligence algorithms still face some 

issues, such as premature convergence and getting stuck in 

local optima, which require further research and improvement. 

III. REINFORCEMENT LEARNING-BASED MRTA 

METHODS  

A. Overview of Reinforcement Learning 

Reinforcement Learning (RL) is a machine learning method 

aimed at optimizing an agent's decision-making behavior 

through interactions with the environment. Its core idea stems 

from behavioral psychology, particularly operant conditioning 

theory, which simulates how organisms adapt to their 

environment and obtain rewards through trial-and-error 

learning. The goal of reinforcement learning is to continuously 

explore and utilize environmental feedback to find the optimal 

policy that maximizes cumulative rewards. 

In reinforcement learning, the agent selects an action  at 

each time step (t) based on the current state . After executing 

the action, the environment transitions to the next state  

and provides the agent with a reward . The agent's task is 

to continuously explore and learn to find a policy ( ) that 

maximizes the cumulative reward over the long term. This 

process can be described through the following main 

components: 

State (State): A specific description of the environment, 

usually represented as a feature vector. 

Action (Action): Operations that the agent can take in the 

environment. 

Reward (Reward): Feedback signal from the environment 

for the agent's action, usually a scalar value used to evaluate 

the quality of the action. 

Policy (Policy): The rule by which the agent selects actions 

based on states, represented as , the probability of 

selecting action ( ) in state ( ). 

Value Function (Value Function): Used to assess the quality 

of a state or state-action pair. Common value functions include 

the state value function  and the action value function 

( ). 

The primary goal of reinforcement learning is to learn the 

optimal policy ( ) that allows the agent to maximize the 

expected cumulative reward from any initial state: 

 

where  is the discount factor , used to 

measure the importance of future rewards. 

In recent years, with the rapid development of computing 

power and deep learning technology, reinforcement learning 

has achieved remarkable results in various fields. Particularly, 

Deep Reinforcement Learning (DRL), which combines deep 

neural networks with reinforcement learning algorithms, has 

enabled efficient learning in complex environments. DRL has 

demonstrated strong performance and potential in numerous 

application scenarios, including game AI, autonomous driving, 

and robot control. 

In the domain of multi-robot task allocation, the strength of 

reinforcement learning lies in its robust self-learning and 

adaptability, which enables the continuous optimization of task 

allocation strategies in dynamic and uncertain environments. 

Through ongoing interactions with the environment, 

reinforcement learning algorithms can effectively address 

varying task requirements and environmental conditions, 

progressively converging to the global optimal solution. 

The reinforcement learning-based MRTA (Multi-Robot 

Task Allocation) approach represents a significant research 

direction in the field, primarily utilizing real-time interactions 

and error-detection mechanisms between agents and the 

environment to achieve the maximum cumulative reward, 

thereby training the algorithm's optimal action decision 

sequence. 

To delve deeper into how reinforcement learning can be 

applied in multi-robot task allocation, it is essential first to gain 

a thorough understanding of reinforcement learning and to 

explore the extensive research and discussions conducted by 

scholars both domestically and internationally. Reinforcement 

learning is a type of machine learning methodology designed 

to enable intelligent systems to learn and improve their 

behavior through interaction with the environment, aiming to 

achieve specific goals or maximize cumulative rewards. 

Inspired by theories of behavioral psychology, this field seeks 

to emulate how humans and animals acquire new knowledge 
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and skills through trial-and-error learning. A key feature of 

reinforcement learning is the agent's interaction with the 

environment, where actions are taken and then environmental 

feedback is observed, typically in the form of reward signals. 

The objective for the agent is to find an optimal strategy, a 

series of actions, to maximize cumulative rewards. To achieve 

this goal, reinforcement learning algorithms commonly use 

value functions to assess the value of actions in different states, 

guiding the agent's decision-making process. 

B. Development of Multi-Agent Deep Reinforcement 

Learning 

Over time, reinforcement learning has achieved notable 

success across various fields, and multi-agent deep 

reinforcement learning has rapidly evolved, addressing 

complex real-world problems. However, as noted in the 

literature [25], current multi-agent deep reinforcement learning 

still faces several challenges. One major issue is complexity; 

training a large number of agents is inherently difficult. The 

presence of each agent in the environment adds complexity to 

the learning problem. As the number of agents increases, the 

scalability of individual learning models decreases due to the 

computational demands posed by the potential combinations. 

Since breakthroughs in deep learning methodologies, the 

field has undergone rapid transformation, gradually making 

previously unsolvable problems manageable. Studies [26][27] 

introduced a cooperative deep reinforcement learning task 

allocation method based on deep Q-networks. This method 

employs deep reinforcement learning algorithms, enabling 

collaborative agents to act autonomously and learn how to 

communicate with other nearby agents to allocate tasks and 

share resources. Through this learning capability, agents can 

conveniently reason, devise appropriate strategies, and make 

sound decisions. 

C. Application of Reinforcement Learning in Logistics and 

Warehousing 

A study [28] addressing the problem of multi-robot task 

allocation in warehouse settings proposed a solution based on 

reinforcement learning, the RTAW. This research framed the 

MRTA problem within the warehouse as a reinforcement 

learning challenge, designing the state space, action space, and 

reward functions as part of a Markov decision process. 

Another piece of literature [29] introduced a new multi-robot 

task allocation and decentralized navigation solution, the DC-

MRTA. By employing a dual-layer computational approach, 

this method integrates low-level collision-free decentralized 

navigation with high-level reinforcement learning-based task 

allocation, transforming the decentralized multi-robot task 

allocation challenge into a Markov decision process tackled 

through reinforcement learning strategies. This approach can 

be integrated with decentralized multi-agent path finding 

(MAPF) methods. 

D. Deep Reinforcement Learning Algorithms 

The literature [30] introduced a Shared Experience Actor-

Critic (SEAC) deep reinforcement learning algorithm, which 

updates the actor and critic parameters of agents by combining 

gradients calculated from the agents' experiences and weighing 

these gradients with experiences from other agents. This shared 

experience approach allows for more effective learning among 

agents. Agents can learn from each other's experiences without 

needing to have the same reward functions. Ultimately, SEAC 

outperformed independent learning, shared strategy training, 

and advanced Multi-Agent Reinforcement Learning (MARL) 

algorithms in four different environments [31]. 

The Q-learning algorithm is a classical reinforcement 

learning method designed to maximize cumulative rewards by 

addressing Markov decision processes, thereby generating the 

best decision sequence. As the field of reinforcement learning 

has evolved, Q-learning has been widely applied in high-tech 

areas, including task scheduling, system resource allocation, 

and gaming [32]. Q-learning has demonstrated exceptional 

performance in solving multi-robot task allocation problems, 

despite these problems differing from traditional task planning 

issues [33]. To successfully extend the Q-learning algorithm 

from single-robot to multi-robot issues, literature [34] proposed 

a new method called Team-Q. The core idea of this algorithm 

is to transform individual robot action selection into 

collaborative action selection among multiple robots, thus 

enabling the Q-learning algorithm to effectively solve multi-

robot problems. Furthermore, literature [35] introduced the 

Distributed-Q algorithm to address the challenges of vast state-

action spaces in multi-robot collaborative task allocation. This 

method focuses on handling states and actions in a distributed 

manner, enhancing the efficiency and scalability of multi-robot 

systems. 

E. Methods of Hierarchical Reinforcement Learning 

Implementing Hierarchical Reinforcement Learning (HRL) 

primarily involves several different algorithmic frameworks. 

The first is the options-based HRL algorithm, which 

decomposes tasks into manageable subtasks by defining 

options that include policies, termination conditions, and initial 

conditions, allowing for selection and switching among 

different options [36]. The second approach is based on the 

hierarchical abstract machine HRL algorithm, which uses a 

hierarchical abstract machine to structure tasks at different 

levels, achieving the gradual refinement and execution of tasks 

through decision-making and learning across these levels [37]. 

The third type is the value function decomposition HRL 

algorithm, which decomposes the global value function into 

local value functions, allowing each subtask to learn and 

optimize independently within the local environment, thus 

effectively executing the overall task [38]. The fourth type is 

the end-to-end HRL algorithm, which learns directly from raw 

inputs to final outputs through end-to-end training, thereby 

implementing layered learning and execution of tasks [39]. 

Literature [40] introduced a hierarchically stable Multi-Agent 

Deep Reinforcement Learning (MADRL) algorithm. In the 

hierarchical learning component, a two-layer policy model is 

used to reduce the complexity of the solution space and train 

these two interlinked strategies using an interleaved learning 

paradigm. 

However, in traditional reinforcement learning (RL) settings, 

it is usually assumed that agents operate in a static environment, 

meaning the dynamics and rewards of the environment are 

fixed. Yet, in more realistic scenarios, this stability assumption 

seldom holds. 

CONCLUSION 

In summary, multi-robot task allocation as a complex and 

significant research area has attracted considerable attention 

and study from scholars. From traditional linear programming 

methods to heuristic searches, swarm intelligence algorithms, 

and the recently popularized reinforcement learning 

approaches, each algorithm has its unique strengths and 

limitations. Linear programming excels in small-scale 

problems but becomes computationally complex as the scale of 
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the problem increases. Heuristic search methods, despite their 

efficiency in handling large-scale issues, still struggle with the 

problem of local optima. Swarm intelligence algorithms, by 

simulating natural group behaviors, provide new solutions for 

multi-robot task allocation but also need to overcome issues 

like premature convergence. 

Reinforcement learning methods, due to their self-learning 

capabilities and advantages in interacting with the environment, 

have gradually become a research hotspot in the field of multi-

robot task allocation. Through continuous exploration and 

feedback adjustment, reinforcement learning can progressively 

approximate the optimal solution in dynamic and complex 

environments. However, the existing reinforcement learning 

algorithms still face challenges in computational complexity 

and training efficiency when applied in multi-agent systems, 

necessitating further research and optimization. The next 

direction for research in multi-robot task allocation using 

reinforcement learning should focus on the application of 

lifelong reinforcement learning, which can enhance 

algorithmic efficiency and reduce costs in this domain. 

Looking forward, as technological advancements continue 

and computing power increases, multi-robot task allocation 

algorithms will become more efficient and intelligent. 

Developing hybrid task allocation strategies that combine the 

advantages of various algorithms could be an effective way to 

solve large-scale complex problems. Additionally, with the 

widespread adoption of emerging technologies such as the 

Internet of Things (IoT) and 5G, the real-time communication 

and collaborative capabilities of multi-robot systems will be 

enhanced, broadening the prospects for the application of 

multi-robot task allocation algorithms. 
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