
International Journal of Trend in Research and Development, Volume 2(4), ISSN 2394-9333

www.ijtrd.com

IJTRD | July-August 2015

Available Online@www.ijtrd.com 175

Design Quaternary Multiplication using Quaternary Sign Digit

Number addition
1
P. Hareesh,

2
Ch. KalyanChakravarthi and

3
D. TirumalaRao

1
M.Tech ECE (VLSI&ES),

2
Assistant Professor and

3
Associate Professor,

1,2,3
Department of ECE, GMR Institute of Technology, Rajam, India.

Abstract

Common binary arithmetic operations such as

addition/subtraction and multiplication suffer from O(n)

carry propagation delay where n is the number of digits.

Carry lookahead helps to improve the propagation delay to

O(log n), but is bounded to a small number of digits due to

the complexity of the circuit. A carry-free arithmetic

operation can be achieved using a higher radix number

system such as Quarternary Signed Digit (QSD). In QSD,

each digit can be represented by a number from -3 to 3. This

number system allows multiple representations of any

integer. By exploiting this feature, we can design an adder

without ripple carry. The implementation of quarternary

addition and multiplication results in a fix delay independent

of the number of digits. Operations on a large number of

digits such as 64, 128, or more, can be implemented with

constant delay and less complexity. This paper focuses on

the implementation of quarternary addition and

multiplication. Results are verified and the performance is

shown to be consistent with the constant delay model.

Keywords: quaternary signed digit, programmable logic.

1. Introduction

Arithmetic operations are widely used and play

important roles in various digital systems such as computers

and signal processors. QSD number representation has

attracted the interest of many researchers. Additionally,

recent advances in technologies for integrated circuits make

large scale arithmetic circuits suitable for VLSI

implementation [1][2]. However, arithmetic operations still

suffer from known problems including limited number of

bits, propagation time delay, and circuit complexity.

In this paper, we propose a high speed QSD arithmetic

logic unit which is capable of carry free addition, borrow

free subtraction, up-down count and multiply operations.

The QSD addition/subtraction operation employs a fixed

number of minterms for any operand size. The multiplier is

composed of partial product generators and adders. For

convenience of

testing and to verify results, we choose to implement the units

using a programmable logic device.

This paper is organized as follows. Section 2 presents the

quaternary signed digit (QSD) number. The adder/subtractor

and multiplier design are detailed in section 3 and section 4,

respectively. Section 5 presents results and performance.

Section 6 presents conclusions and future work.

2. QSD Numbers

QSD numbers are represented using 3-bit 2’s

complement notation. Each number can be represented by
n

D =∑ xi4
i
, (1)

i

where xi can be any value from the set {3,2,1,0,1,2,3} for
producing an appropriate decimal representation. A QSD

negative number is the QSD complement of the
QSD positive number i.e., 3= −3 , 2= −2 and 1= −1 . For

example, 1233QSD= 2310 and 1 233QSD= −2310 .

3. Adder/Subtractor Design

Addition is the most important arithmetic operation in

digital computation. A carry-free addition is highly desirable

as the number of digits becomes large. We can achieve carry-

free addition by exploiting the redundancy of QSD numbers

and the QSD addition. The redundancy allows multiple

representations of any
integer quantity i.e., 610=12QSD=22QSD .

There are two steps involved in the carry-free addition.

The first step generates an intermediate carry and sum from

the addend and augend. The second step combines the

intermediate sum of the current digit with the carry of the

lower significant digit. To prevent carry from further rippling,

we define two rules. The first rule states that the magnitude of

the intermediate sum must be less than or equal to 2. The

second rule states that the magnitude of the carry must be less

than or equal to 1. Consequently, the magnitude of the second

step output

International Journal of Trend in Research and Development, Volume 2(4), ISSN 2394-9333

www.ijtrd.com

IJTRD | July-August 2015

Available Online@www.ijtrd.com 176

cannot be greater than 3 which can be represented by a

single-digit QSD number; hence no further carry is

required. In step 1, all possible input pairs of the addend

and augend are considered. The output ranges from -6 to

6 as shown in Table 1.

Table 1. The outputs of all possible

combinations of a pair of addend (A) and augend (B).

A
B

 -3-2-10 1 2 3

-3 -6 -5 -4 -3 -2 -1 0

-2 -5 -4 -3 -2 -1 0 1

-1 -4 -3 -2 -1 0 1 2

0 -3 -2 -1 0 1 2 3

1 -2 -1 0 1 2 3 4

2 -1 0 1 2 3 4 5

3 0 1 2 3 4 5 6

The range of the output is from -6 to 6 which can be

represented in the intermediate carry and sum in QSD

format as show in Table 2. Some numbers have multiple

representations, but only those that meet the defined

rules are chosen. The chosen intermediate carry and sum

are listed in the last column of Table 2.

Table 2. The intermediate carry and

sum between -6 to 6.

Sum
QSD represented QSD coded

number number

-6

22,1 2

 1
2

-5

 23,1 1 1
1

-4

0

0

1 1

-3

1

 1 1,03 1

-2

1 2,02

 02

-1

3,0

0

 1
1 1

0 00 00

1 01,13

01

2 02,12

02

3 03,1

1

1
1

4 10 10

5 11,23

11

6 12,22

12

Both inputs and outputs can be encoded in 3-bit 2’s

complement binary number. The mapping between the

inputs, addend and augend, and the outputs, the

intermediate carry and sum are shown in binary format

in Table 3. Since the intermediate carry is always

between -1 and 1, it requires only a 2- bit binary

representation. Finally, five 6-variable Boolean

expressions can be extracted. The intermediate carry and

sum circuit is shown in Figure 1.

Table 3. The mapping between the inputs and outputs of

the intermediate carry and sum.

 INPUT OUTPUT

QSD Binary Decimal QSD Binary

Ai Bi Ai Bi Sum Ci Si Ci Si
3 3 011 011 6 1 2 01 010
3 2 011 010 5 1 1 01 001

2 3 010 011 5 1 1 01 001

3 1 011 001 4 1 0 01 000
1 3 001 011 4 1 0 01 000

2 2 010 010 4 1 0 01 000
1 2 001 010 3 1 -1 01 111
2 1 010 001 3 1 -1 01 111

3 0 011 000 3 1 -1 01 111

0 3 000 011 3 1 -1 01 111
1 1 001 001 2 0 2 00 010
0 2 000 010 2 0 2 00 010
2 0 010 000 2 0 2 00 010

3 -1 011 111 2 0 2 00 010

-1 3 111 011 2 0 2 00 010
0 1 000 001 1 0 1 00 001
1 0 001 000 1 0 1 00 001
2 -1 010 111 1 0 1 00 001

-1 2 111 010 1 0 1 00 001

3 -2 011 110 1 0 1 00 001

-2 3 110 011 1 0 1 00 001
0 0 000 000 0 0 0 00 000
1 -1 001 111 0 0 0 00 000
-1 1 111 001 0 0 0 00 000

2 -2 010 110 0 0 0 00 000

-2 2 110 010 0 0 0 00 000

-3 3 101 011 0 0 0 00 000

3 -3 011 101 0 0 0 00 000
0 -1 000 111 -1 0 -1 00 111
-1 0 111 000 -1 0 -1 00 111

-2 1 110 001 -1 0 -1 00 111

1 -2 001 110 -1 0 -1 00 111
-3 2 101 010 -1 0 -1 00 111

2 -3 010 101 -1 0 -1 00 111
-1 -1 111 111 -2 0 -2 00 110
0 -2 000 110 -2 0 -2 00 110

-2 0 110 000 -2 0 -2 00 110

-3 1 101 001 -2 0 -2 00 110

1 -3 001 101 -2 0 -2 00 110
-1 -2 111 110 -3 -1 1 11 001
-2 -1 110 111 -3 -1 1 11 001
-3 0 101 000 -3 -1 1 11 001

0 -3 000 101 -3 -1 1 11 001
-3 -1 101 111 -4 -1 0 11 000
-1 -3 111 101 -4 -1 0 11 000

-2 -2 110 110 -4 -1 0 11 000

-3 -2 101 110 -5 -1 -1 11 111

-2 -3 110 101 -5 -1 -1 11 111

-3 -3 101 101 -6 -1 -2 11 110

In step 2, the intermediate carry from the lower

significant digit is added to the sum of the current digit

International Journal of Trend in Research and Development, Volume 2(4), ISSN 2394-9333

www.ijtrd.com

IJTRD | July-August 2015

Available Online@www.ijtrd.com 177

to produce the final result. The addition in this step

produces no carry because the current digit can always

absorb the carry-in from the lower digit. Table 4 shows

all possible combinations of the summation between the

intermediate carry and the sum.

Figure 1. The intermediate carry and sum generator.

Table 4. The outputs of all possible combinations

of a pair of intermediate carry (A) and sum (B).

A
B

 -2 -1 0 1 2
-1 -3 -2 -1 0 1

0 -2 -1 0 1 2

1 -1 0 1 2 3

Theresultof addition in this steprangesfrom

-3 to 3. Since carry is not allowed in this step, the result

becomes a single digit QSD output. The inputs, the

intermediate carry and sum, are 2-bit and 3-bit binary

respectively. The output is a 3-bit binary represented

QSD number. The mapping between the 5-bit input and

the 3-bit output is shown in Table 5.

Table 5. The mapping between inputs and outputs

of the second step QSD adder.

 INPUT OUTPUT

QSD Binary Decimal QSD Binary

Ai Bi Ai Bi Sum Si Si
1 2 01 010 3 3 111
1 1 01 001 2 2 010

0 2 00 010 2 2 010
0 1 00 001 1 1 001
1 0 01 000 1 1 001

-1 2 11 010 1 1 001
0 0 00 000 0 0 000
1 -1 01 111 0 0 000

-1 1 11 001 0 0 000
0 -1 00 111 -1 -1 111
-1 0 11 000 -1 -1 111

1 -2 01 110 -1 -1 111
-1 -1 11 111 -2 -2 110

0 -2 00 110 -2 -2 110

-1 -2 11 110 -3 -3 001

Three 5-variable Boolean expressions can be

extracted from Table 5. Figure 2 shows the diagram of

the second step adder. The implementation of an n-digit

QSD adder requires n QSD carry and sum generators

and n -1 second step adders as shown in Figure 3. The

result turns out to be an n+1-digit number.

Figure 2. The second step QSD adder.

Figure 3. n-digit QSD adder.

4. Multiplier Design

There are generally two methods for a multiplication

operation: parallel and iterative. QSD multiplication can be
implemented in both ways, requiring a QSD partial product
generator and QSD adder as basic components. A partial

product, Mi, is a result of multiplication between an n-digit

input, An-1-A0, with a single digit input, Bi, where i = 0..n-1.

The primitive component of the partial product generator is a
single-digit multiplication unit whose functionality can be
expressed as shown in Table 6.

Table 6. The outputs of all possible combinations of a

pair of multiplicand (A) and multiplier (B).

A
B

 -3-2-10 1 2 3

-3 9 6 3 0 -3 -6 -9

-2 6 4 2 0 -2 -4 -6

-1 3 2 1 0 -1 -2 -3

0 0 0 0 0 0 0 0

1 -3 -2 -1 0 1 2 3

2 -6 -4 -2 0 2 4 6

3 -9 -6 -3 0 3 6 9

The single-digit multiplication produces M as a result

and C as a carry to be combined with M of the next digit.

The range of both outputs, M and C, is

International Journal of Trend in Research and Development, Volume 2(4), ISSN 2394-9333

www.ijtrd.com

IJTRD | July-August 2015

Available Online@www.ijtrd.com 178

between -2 and 2. According to Table 8, and using the

same procedure as in creating Table 3 and 5, the

mapping between the 6-bit input, A and B, to the 6-bit

output, M and C, results in six 6-varible Boolean

expressions which represent a single-digit multiplication

operation. The diagram of a single-digit QSD multiplier

is shown in Figure 4.

Figure 4. A single-digit QSD multiplier.

The implementation of an n-digit partial product

generator uses n units of the single-digit QSD multiplier.

Gathering all the outputs to produce a partial product

result presents a small challenge. The QSD

representation of a single digit multiplication output,

shown in Table 7, contains a carry-out of magnitude 2

when the output is either -9 or 9. This prohibits the use

of the second step QSD adder alone as a gatherer. In fact,

we can use the complete QSD adder from the previous

section as the gatherer. Furthermore, the intermediate

carry and sum circuit can be optimized by not

considering the input of magnitude 3. The QSD partial

product generator implementation is shown in Figure 5.

Table 7. The QSD representation of a single-digit

multiplication output.

Mult
QSD represented QSD coding

Number Number

-9

2 1,33

 2 1

-6

 22,1 2 1 2

-4

0

0

1 1

-3

1

 1 1,03 1

-2

 1 2,02 02

-1

3,0

0

 1
1 1

0 00 00

1 01,13

01

2 02,12

02

3 03,1

1

1 1

4 10 10

6 12,22

12

9 21,33

21

An nxn-digit QSD multiplication requires n partial

product terms. In an iterative implementation, a 2n-digit

QSD adder is used to perform add-shift operations

between the partial product generator and the

accumulator. After n iterations, the multiplication is

complete. In contrast, a parallel implementation requires n

partial product circuits and n-1 QSD adder units. A binary

reduction sum is applied to reduce the propagation delay to

O(log n). The schematic of a 4x4 parallel QSD

multiplication is shown in Figure 6.

Figure 5. The n-digit QSD partial product generator.

Figure 6. The 4x4 parallel QSD multiplication circuit

5. Results

The QSD adder and multiplication circuit are written in

VHDL and synthesized on Altera FPGA devices using

LeonardoSpectrum
tm

 from Mentor Graphics. The results of

the implemented QSD addition and multiplication operations
were collected from the timing simulation of the Altera

MAX+plus II software. The correctness of the results is
confirmed.

The device chosen for implementation is an Altera

FLEX10K device. The Altera FLEX10K devices [5] are the

industry’s first embedded PLDs. Based on reconfigurable

CMOS SRAM elements, the Flexible Logic Element MatriX

(FLEX) architecture incorporates all features necessary to

implement common gate array megafunctions with up to

250,000 gates. The EPF10K70 device is ideal for

intermediate to advanced design including computer

architecture,

International Journal of Trend in Research and Development, Volume 2(4), ISSN 2394-9333

www.ijtrd.com

IJTRD | July-August 2015

Available Online@www.ijtrd.com 179

communications, and DSP applications. The EPF10K70

device has over 70,000 typical gates, 3,744 Logic

Elements (LEs), and 9 Embedded Array Blocks (EABs).

We test the performance of the QSD adder against

the binary ripple carry adder and the high performance

Altera megafunction adder. The comparison of the

registered performance is shown in Figure 7 and Table 8.

The test is performed for various sizes of the adder. The

QSD number is capable of representing twice as much

magnitude in each digit compared to the binary

representation. Therefore, for an n-bit binary adder

comparison, the n/2-bit QSD implementation is used for

comparison.

(M
H

z)

140

120

p
er

fo
rm

a
n

ce

100

80

60

40

R
eg

is
te

re
d

20

0

4 8 16 32 64 128

Number of bits

 Ripple carry adder Altera megafunction adder QSD adder

Figure 7. Comparison of the registered performance

of all the test adders.

Table 8. Adder registered performance (MHz).

Number
Ripple Altera

QSD

carry megafunction

of bits adder

adder adder

4 125.00 125.00 55.55

8 62.89 125.00 45.24

16 51.02 125.00 45.04

32 21.97 78.74 39.84

64 12.46 31.94 34.60

128 5.89 16.52 41.49

The registered performance confirms that the QSD

adder is superior to other adders for large numbers

beyond 64-bits. The delay of the QSD adder is

theoretically constant, but due to the limitation of the

FPGA implementation and optimization, the delay

varies slightly.

The complexity of the adders is measured in terms

of the number of logic cells used in each

implementation. The results are listed in Figure 8 and

Table 9. The complexity comparison shows that all the

test adders grow linearly in proportion to the number of

bits, which is better than those of the carry lookahead

scheme. The considerably high complexity of QSD adder is

due to the inefficiency of the 6-variable Boolean expression

implementation in the FPGA. A customized VLSI design can

reduce the complexity to an affordable level.

C
e
ll

s

10000

1000

L
o

g
ic

100

b
e

r
o

f

10

N
u

m

1

 4 8 16 32 64 128

Number of bits

 Ripple carry adder Altera megafunction adder QSD adder

Figure 8. Comparison of the number of logic cells used in

all the test adders.

Table 9. The number of logic cells required for

implementation.

Number
Ripple Altera

carry megafunction QSD

of bits adder adder adder

4 6 4 37

8 25 8 83

16 78 16 175

32 127 32 361

64 291 72 730

128 333 137 1468

6. Conclusions

The implementation of QSD addition and multiplication

are presented. The test confirms the superior performance of

the QSD adder implementation over other adders beyond 64-

bits due to the carry-free addition scheme. The complexity of

the QSD adder is linearly proportional to the number of bits

which are of the same order as the simplest adder, the ripple

carry adder. This QSD adder can be used as a building block

for other arithmetic operations such as multiplication,

division, square root, etc. With the QSD addition scheme,

some well-known arithmetic algorithms can be directly

implemented.

REFERENCES

[1] I. M. Thoidis, D. Soudris, J. M. Fernandez, A.

Thanailakis, “The circuit design of multiple-

valuedlogic voltage-mode adders,” 2001 IEEE

International Journal of Trend in Research and Development, Volume 2(4), ISSN 2394-9333

www.ijtrd.com

IJTRD | July-August 2015

Available Online@www.ijtrd.com 180

International Symposium on Circuits and Systems,
pp 162-165, Vol. 4 , 2001.

[2] O. Ishizuka, A. Ohta, K. Tannno, Z. Tang, D.
Handoko, “VLSI design of a quaternary
multiplierwith direct generation of partial
products,”

Proceedings of the 27
th

 International Symposium on

Multiple-Valued Logic, pp. 169-174, 1997.

[3] A. K. Cherri, “Canonical quaternary arithmeticbased

on optical content-addressable memory (CAM)”

Proceedings of the 1996 NationalAerospace and

Electronics Conference, pp. 655-661, Vol. 2, 1996.

[4] J. U. Ahmed, A. A. S. Awwal, “Multiplier

designusing RBSD number system”, Proceedings of

the1993 National Aerospace and Electronics

Conference, pp. 180-184, Vol. 1, 1993.

[5] FLEX 10K Embedded Programmable Logic Family

Data Sheet, version 4.1,

http://www.altera.com,March 2001.

