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Abstract 
 

Common binary arithmetic operations such as 

addition/subtraction and multiplication suffer from O(n) 

carry propagation delay where n is the number of digits. 

Carry lookahead helps to improve the propagation delay to 

O(log n), but is bounded to a small number of digits due to 

the complexity of the circuit. A carry-free arithmetic 

operation can be achieved using a higher radix number 

system such as Quarternary Signed Digit (QSD). In QSD, 

each digit can be represented by a number from -3 to 3. This 

number system allows multiple representations of any 

integer. By exploiting this feature, we can design an adder 

without ripple carry. The implementation of quarternary 

addition and multiplication results in a fix delay independent 

of the number of digits. Operations on a large number of 

digits such as 64, 128, or more, can be implemented with 

constant delay and less complexity. This paper focuses on 

the implementation of quarternary addition and 

multiplication. Results are verified and the performance is 

shown to be consistent with the constant delay model. 
 
Keywords: quaternary signed digit, programmable logic. 

 
1. Introduction 

 
Arithmetic operations are widely used and play 

important roles in various digital systems such as computers 

and signal processors. QSD number representation has 

attracted the interest of many researchers. Additionally, 

recent advances in technologies for integrated circuits make 

large scale arithmetic circuits suitable for VLSI 

implementation [1][2]. However, arithmetic operations still 

suffer from known problems including limited number of 

bits, propagation time delay, and circuit complexity. 
 

In this paper, we propose a high speed QSD arithmetic 

logic unit which is capable of carry free addition, borrow 

free subtraction, up-down count and multiply operations. 

The QSD addition/subtraction operation employs a fixed 

number of minterms for any operand size. The multiplier is 

composed of partial product generators and adders. For 

convenience of 

 
testing and to verify results, we choose to implement the units 

using a programmable logic device. 
 

This paper is organized as follows. Section 2 presents the 

quaternary signed digit (QSD) number. The adder/subtractor 

and multiplier design are detailed in section 3 and section 4, 

respectively. Section 5 presents results and performance. 

Section 6 presents conclusions and future work. 
 
2. QSD Numbers 

 
QSD numbers are represented using 3-bit 2’s 

complement notation. Each number can be represented by 
n  

D =∑ xi4
i
, (1) 

i 

where xi can be any value from the set {3,2,1,0,1,2,3} for  
producing an appropriate decimal representation. A QSD 

negative number is the QSD complement of the  
QSD positive number i.e., 3= −3 , 2= −2 and 1= −1 . For 

example, 1233QSD= 2310 and 1 233QSD= −2310 . 

 
3. Adder/Subtractor Design 

 
Addition is the most important arithmetic operation in 

digital computation. A carry-free addition is highly desirable 

as the number of digits becomes large. We can achieve carry-

free addition by exploiting the redundancy of QSD numbers 

and the QSD addition. The redundancy allows multiple 

representations of any  
integer quantity i.e., 610=12QSD=22QSD . 

 
There are two steps involved in the carry-free addition. 

The first step generates an intermediate carry and sum from 

the addend and augend. The second step combines the 

intermediate sum of the current digit with the carry of the 

lower significant digit. To prevent carry from further rippling, 

we define two rules. The first rule states that the magnitude of 

the intermediate sum must be less than or equal to 2. The 

second rule states that the magnitude of the carry must be less 

than or equal to 1. Consequently, the magnitude of the second 

step output 
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cannot be greater than 3 which can be represented by a 

single-digit QSD number; hence no further carry is 

required. In step 1, all possible input pairs of the addend 

and augend are considered. The output ranges from -6 to 

6 as shown in Table 1. 
 

Table 1. The outputs of all possible 

combinations of a pair of addend (A) and augend (B). 
 

A
B

 -3-2-10 1 2 3 

-3  -6 -5 -4 -3 -2 -1 0 

-2 -5 -4 -3 -2 -1 0 1 

-1  -4 -3 -2 -1 0 1 2 

0  -3 -2 -1 0 1 2 3 

1  -2 -1 0 1 2 3 4 

2  -1 0 1 2 3 4 5 

3  0 1 2 3 4 5 6 

 
The range of the output is from -6 to 6 which can be 

represented in the intermediate carry and sum in QSD 

format as show in Table 2. Some numbers have multiple 

representations, but only those that meet the defined 

rules are chosen. The chosen intermediate carry and sum 

are listed in the last column of Table 2. 
 

Table 2. The intermediate carry and 

sum between -6 to 6. 
 

Sum 
QSD represented QSD coded 

 

number number  

 
 

-6 
 

                                           

22,1 2 
  

    

    

     

   

 

 1 
2  

-5 
                                          

 

  23,1 1   1      
1   

 

-4 
     

 

0 
          

 

    

0 
  

 

1           1   
 

-3 
                                

1 
 

    1 1,03    1 
 

-2 
 

                   

 

 

   

  

   
 

1 2,02 
     

      02    
 

-1 
    

3,0  

         

0 
   

 

  1 
1  1  

 

0 00               00   
 

1 01,13 
      

    

   

01 
   

          
 

                    

2 02,12 
      

    

   

02 
     

 

            
 

                 

3 03,1 
  

          

1 
         

 

1     
1     

 

4 10               10   
 

5 11,23 
      

 

    

11 
    

 

          
 

               

6 12,22 
      

 

    

12 
     

 

          
 

                                             

 
Both inputs and outputs can be encoded in 3-bit 2’s 

complement binary number. The mapping between the 

inputs, addend and augend, and the outputs, the 

intermediate carry and sum are shown in binary format 

in Table 3. Since the intermediate carry is always 

between -1 and 1, it requires only a 2- bit binary 

representation. Finally, five 6-variable Boolean 

expressions can be extracted. The intermediate carry and 

sum circuit is shown in Figure 1. 

Table 3. The mapping between the inputs and outputs of 

the intermediate carry and sum. 
 

  INPUT   OUTPUT   

QSD  Binary Decimal QSD  Binary 

Ai Bi  Ai Bi Sum Ci Si  Ci Si 
3 3  011 011 6 1 2  01 010 
3 2  011 010 5 1 1  01 001 

2 3  010 011 5 1 1  01 001 

3 1  011 001 4 1 0  01 000 
1 3  001 011 4 1 0  01 000 

2 2  010 010 4 1 0  01 000 
1 2  001 010 3 1 -1  01 111 
2 1  010 001 3 1 -1  01 111 

3 0  011 000 3 1 -1  01 111 

0 3  000 011 3 1 -1  01 111 
1 1  001 001 2 0 2  00 010 
0 2  000 010 2 0 2  00 010 
2 0  010 000 2 0 2  00 010 

3 -1  011 111 2 0 2  00 010 

-1 3  111 011 2 0 2  00 010 
0 1  000 001 1 0 1  00 001 
1 0  001 000 1 0 1  00 001 
2 -1  010 111 1 0 1  00 001 

-1 2  111 010 1 0 1  00 001 

3 -2  011 110 1 0 1  00 001 

-2 3  110 011 1 0 1  00 001 
0 0  000 000 0 0 0  00 000 
1 -1  001 111 0 0 0  00 000 
-1 1  111 001 0 0 0  00 000 

2 -2  010 110 0 0 0  00 000 

-2 2  110 010 0 0 0  00 000 

-3 3  101 011 0 0 0  00 000 

3 -3  011 101 0 0 0  00 000 
0 -1  000 111 -1 0 -1  00 111 
-1 0  111 000 -1 0 -1  00 111 

-2 1  110 001 -1 0 -1  00 111 

1 -2  001 110 -1 0 -1  00 111 
-3 2  101 010 -1 0 -1  00 111 

2 -3  010 101 -1 0 -1  00 111 
-1 -1  111 111 -2 0 -2  00 110 
0 -2  000 110 -2 0 -2  00 110 

-2 0  110 000 -2 0 -2  00 110 

-3 1  101 001 -2 0 -2  00 110 

1 -3  001 101 -2 0 -2  00 110 
-1 -2  111 110 -3 -1 1  11 001 
-2 -1  110 111 -3 -1 1  11 001 
-3 0  101 000 -3 -1 1  11 001 

0 -3  000 101 -3 -1 1  11 001 
-3 -1  101 111 -4 -1 0  11 000 
-1 -3  111 101 -4 -1 0  11 000 

-2 -2  110 110 -4 -1 0  11 000 

-3 -2  101 110 -5 -1 -1  11 111 

-2 -3  110 101 -5 -1 -1  11 111 

-3 -3  101 101 -6 -1 -2  11 110 

 
In step 2, the intermediate carry from the lower 

significant digit is added to the sum of the current digit 
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to produce the final result. The addition in this step 

produces no carry because the current digit can always 

absorb the carry-in from the lower digit. Table 4 shows 

all possible combinations of the summation between the 

intermediate carry and the sum. 
 
 
 
 
 

 

Figure 1. The intermediate carry and sum generator. 

 
Table 4. The outputs of all possible combinations 

of a pair of intermediate carry (A) and sum (B). 
 

A
B

 -2 -1 0 1 2  
-1  -3 -2 -1  0  1  

0  -2 -1 0  1  2  

1  -1 0 1  2  3  

Theresultof addition in this steprangesfrom 

-3 to 3. Since carry is not allowed in this step, the result 

becomes a single digit QSD output. The inputs, the 

intermediate carry and sum, are 2-bit and 3-bit binary 

respectively. The output is a 3-bit binary represented 

QSD number. The mapping between the 5-bit input and 

the 3-bit output is shown in Table 5. 
 

Table 5. The mapping between inputs and outputs 

of the second step QSD adder. 
 

 INPUT   OUTPUT  

QSD Binary Decimal  QSD Binary 

Ai Bi Ai Bi Sum  Si Si 
1 2 01 010 3  3 111 
1 1 01 001 2  2 010 

0 2 00 010 2  2 010 
0 1 00 001 1  1 001 
1 0 01 000 1  1 001 

-1 2 11 010 1  1 001 
0 0 00 000 0  0 000 
1 -1 01 111 0  0 000 

-1 1 11 001 0  0 000 
0 -1 00 111 -1  -1 111 
-1 0 11 000 -1  -1 111 

1 -2 01 110 -1  -1 111 
-1 -1 11 111 -2  -2 110 

0 -2 00 110 -2  -2 110 

-1 -2 11 110 -3  -3 001 

 
Three 5-variable Boolean expressions can be 

extracted from Table 5. Figure 2 shows the diagram of 

the second step adder. The implementation of an n-digit 

QSD adder requires n QSD carry and sum generators 

and n -1 second step adders as shown in Figure 3. The 

result turns out to be an n+1-digit number. 

 
 
 
 
 

 

Figure 2. The second step QSD adder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. n-digit QSD adder. 

 

4. Multiplier Design 

 
There are generally two methods for a multiplication 

operation: parallel and iterative. QSD multiplication can be 
implemented in both ways, requiring a QSD partial product 
generator and QSD adder as basic components. A partial 

product, Mi, is a result of multiplication between an n-digit 

input, An-1-A0, with a single digit input, Bi, where i = 0..n-1. 

The primitive component of the partial product generator is a 
single-digit multiplication unit whose functionality can be 
expressed as shown in Table 6. 
 

Table 6. The outputs of all possible combinations of a 

pair of multiplicand (A) and multiplier (B). 
 

A
B

 -3-2-10 1 2 3 

-3 9 6 3 0 -3 -6 -9 

-2 6 4 2 0 -2 -4 -6 

-1 3 2 1 0 -1 -2 -3 

0 0 0 0 0 0 0 0 

1 -3 -2 -1 0 1 2 3 

2 -6 -4 -2 0 2 4 6 

3 -9 -6 -3 0 3 6 9 

 
The single-digit multiplication produces M as a result 

and C as a carry to be combined with M of the next digit. 

The range of both outputs, M and C, is 
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between -2 and 2. According to Table 8, and using the 

same procedure as in creating Table 3 and 5, the 

mapping between the 6-bit input, A and B, to the 6-bit 

output, M and C, results in six 6-varible Boolean 

expressions which represent a single-digit multiplication 

operation. The diagram of a single-digit QSD multiplier 

is shown in Figure 4. 
 
 
 
 
 

 

Figure 4. A single-digit QSD multiplier. 

 

The implementation of an n-digit partial product 

generator uses n units of the single-digit QSD multiplier. 

Gathering all the outputs to produce a partial product 

result presents a small challenge. The QSD 

representation of a single digit multiplication output, 

shown in Table 7, contains a carry-out of magnitude 2 

when the output is either -9 or 9. This prohibits the use 

of the second step QSD adder alone as a gatherer. In fact, 

we can use the complete QSD adder from the previous 

section as the gatherer. Furthermore, the intermediate 

carry and sum circuit can be optimized by not 

considering the input of magnitude 3. The QSD partial 

product generator implementation is shown in Figure 5. 
 

 
Table 7. The QSD representation of a single-digit 

multiplication output. 
 

Mult 
QSD represented QSD coding 

 

Number Number  

 
 

-9 
 

    

    

                                     

2 1,33 
 

    

      

    

 

 

     2 1 
 

-6 
                                             

 

 22,1 2  1     2   
 

-4 
       

 

0 
            

 

   

0 
 

  

1             1  
 

-3 
                                    

1 
 

 

    1 1,03      1  
 

-2 
                              

  

  
 

   1 2,02      02   
 

-1 
     

3,0   

          

0 
    

 

  1 
1    1   

 

0 00                00   
 

1 01,13 
      

   

     

01 
   

            
 

                    

2 02,12 
      

   

     

02 
    

 

             
 

                 

3 03,1 
 

            

1 
        

 

1       1    
 

4 10                10   
 

6 12,22 
      

 

      

12 
    

 

            
 

         

9 21,33 
         

 

 

21 
  

 

    
 

                                               

 
An nxn-digit QSD multiplication requires n partial 

product terms. In an iterative implementation, a 2n-digit 

QSD adder is used to perform add-shift operations 

between the partial product generator and the 

accumulator. After n iterations, the multiplication is 

complete. In contrast, a parallel implementation requires n 

partial product circuits and n-1 QSD adder units. A binary 

reduction sum is applied to reduce the propagation delay to 

O(log n). The schematic of a 4x4 parallel QSD 

multiplication is shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. The n-digit QSD partial product generator. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. The 4x4 parallel QSD multiplication circuit 

 

5. Results 

 
The QSD adder and multiplication circuit are written in 

VHDL and synthesized on Altera FPGA devices using 

LeonardoSpectrum
tm

 from Mentor Graphics. The results of 

the implemented QSD addition and multiplication operations 
were collected from the timing simulation of the Altera 

MAX+plus II software. The correctness of the results is 
confirmed. 
 

The device chosen for implementation is an Altera 

FLEX10K device. The Altera FLEX10K devices [5] are the 

industry’s first embedded PLDs. Based on reconfigurable 

CMOS SRAM elements, the Flexible Logic Element MatriX 

(FLEX) architecture incorporates all features necessary to 

implement common gate array megafunctions with up to 

250,000 gates. The EPF10K70 device is ideal for 

intermediate to advanced design including computer 

architecture, 
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communications, and DSP applications. The EPF10K70 

device has over 70,000 typical gates, 3,744 Logic 

Elements (LEs), and 9 Embedded Array Blocks (EABs). 
 

We test the performance of the QSD adder against 

the binary ripple carry adder and the high performance 

Altera megafunction adder. The comparison of the 

registered performance is shown in Figure 7 and Table 8. 

The test is performed for various sizes of the adder. The 

QSD number is capable of representing twice as much 

magnitude in each digit compared to the binary 

representation. Therefore, for an n-bit binary adder 

comparison, the n/2-bit QSD implementation is used for 

comparison. 
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Figure 7. Comparison of the registered performance 

of all the test adders. 
 

Table 8. Adder registered performance (MHz). 

 

Number 
Ripple Altera 

QSD  

carry megafunction  

of bits adder 
 

adder adder  

  
 

4 125.00 125.00 55.55 
 

8 62.89 125.00 45.24 
 

16 51.02 125.00 45.04 
 

32 21.97 78.74 39.84 
 

64 12.46 31.94 34.60 
 

128 5.89 16.52 41.49 
 

 
The registered performance confirms that the QSD 

adder is superior to other adders for large numbers 

beyond 64-bits. The delay of the QSD adder is 

theoretically constant, but due to the limitation of the 

FPGA implementation and optimization, the delay 

varies slightly. 
 

The complexity of the adders is measured in terms 

of the number of logic cells used in each 

implementation. The results are listed in Figure 8 and 

Table 9. The complexity comparison shows that all the 

test adders grow linearly in proportion to the number of 

bits, which is better than those of the carry lookahead 

scheme. The considerably high complexity of QSD adder is 

due to the inefficiency of the 6-variable Boolean expression 

implementation in the FPGA. A customized VLSI design can 

reduce the complexity to an affordable level. 
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Figure 8. Comparison of the number of logic cells used in 

all the test adders. 
 

Table 9. The number of logic cells required for 

implementation. 
 

Number 
Ripple Altera  

 

carry megafunction QSD 
 

of bits adder adder adder 
 

4 6 4 37 
 

8 25 8 83 
 

16 78 16 175 
 

32 127 32 361 
 

64 291 72 730 
 

128 333 137 1468 
 

 

6. Conclusions 

 

The implementation of QSD addition and multiplication 

are presented. The test confirms the superior performance of 

the QSD adder implementation over other adders beyond 64-

bits due to the carry-free addition scheme. The complexity of 

the QSD adder is linearly proportional to the number of bits 

which are of the same order as the simplest adder, the ripple 

carry adder. This QSD adder can be used as a building block 

for other arithmetic operations such as multiplication, 

division, square root, etc. With the QSD addition scheme, 

some well-known arithmetic algorithms can be directly 

implemented. 
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