
International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | May-Jun 2016 
Available Online@www.ijtrd.com   356 

Rate Based Pacing with Various TCP Variants 
1
Prabhakar Kandukuri and 

2
P. Dileep Kumar Reddy and 

3
Dr. R. Praveen Sam, 

1
Associate Professor, 

2
Lecturer, 

3
Professor, 

1,2,3
Computer Science and Engineering Department, 

1
Vardhaman College of Engineering, Kacharam, Shamshabad, India 

2
JNTUA College of Engineering, Anantapuramu, India. 

3
G. PullaReddy Engineering College, kurnool, Andhra Pradesh, India

Abstract— TCP congestion control has been intended to 

ensure the internet constancy along with impartial and an 

efficient allocation of the network bandwidth. To reduce the 

congestion collapse, they are several congestion control 

algorithms, namely TCP Forward acknowledgement (TCP 

Fack), TCP Selective acknowledgement (TCP Sack), and Rate 

Based Pacing are discussed here. The main purpose of this 

paper is to compare and analyze the various congestion control 

algorithms which are available in TCP/IP protocols suite. In 

this paper, we compare and analyze the performance of 

different TCP congestion control algorithms by considering the 

performance metrics, Throughput, end to end delay, Jitter, 

Packet Delivery Ratio and packet loss. A table has also 

specified which show the comparison results of the TCP 

variants. This analysis will be helpful in determining the best 

variants among the various TCP congestion control algorithms 

to ensure the efficient data transfer, reliability, and speed. 

Keywords— Transmission Control Protocol (TCP), Delay, TCP 

Sack, TCP Fack, Rate Based Pacing. 

I.  INTRODUCTION 

TCP is a trust worthy means reliable connection-

oriented stream protocol [2]. A connection is just like 

telephone connection which is virtually between computers. 

So, to maintain virtual connection, we need to maintain current 

status of the information which means last byte sent. TCP a 

connection-oriented because of its 3-way hand shake protocol 

and for every connection state information is maintained [7]. 

TCP is also a stream based protocol. Even though the 

underlying Layer (IP) offers an unreliable data delivery but 

TCP guarantees to deliver data to the other end. It means TCP 

is responsible to deliver an error-free data. This reliability can 

be achieved by identifying the sequence number that each byte 

of data is to be transmitted [13]. Along with it positive 

acknowledgments (ACKs) is sent back to the data sender. This 

acknowledgment specifies that the next byte of the data 

predictable by the receiver. The packets are re-assembled by 

the TCP receiver and transmit to next layer protocol. It is 

necessary to send an acknowledgement for every incoming 

packet [4]. This acknowledgement specifies to the source 

whether the packet is reached or not. Packets can be traced and 

also re-transmitted in this manner if required. 

II. CONGESTION AVOIDANCE 

Whenever so many packets are try to get access the 

same router’s buffer it leads to congestion, which results in 

the dropping of packets [15] .Both transmission protocols and 

network routers are necessary to take action to avoid the 

congestion. Indeed, during a congestion collapse, only a 

minimal of the existing bandwidth is to be used by traffic that 

reaches the receiver finally. Congestion is considered as [3], in 

general, as a disastrous event. However, the congestion itself is 

linked with different properties, depending upon the features 

of the original networks, the mechanisms of the 

communication protocols, the traffic features of the satisfying 

flows, the level off low dispute, and specification of the 

functionality in network routers. 

Slow Start algorithm is used in the initial phase of the 

TCP connection. During the Slow Start phase, the network is 

enforced to drop one or more segments due to overload or 

congestion [8] [11]. If this occurs, congestion avoidance is 

used to reduce the transmission rate. However, the Slow Start 

is combining with Congestion Avoidance as the earnings to get 

the data transmission going over so it does not slow (goes) 

down. 

In the Congestion Avoidance algorithm [4] the re-

transmission timer failing or the response of duplicate ACKs 

can tacitly signal the sender that the network congestion 

situation is happening. The sender directly sets its congestion 

window to one and half of the current congestion window 

(the minimum of the sender’s congestion window size and 

the receiver advertised window) but using of at-least two 

segments. If congestion was specified by a timeout, the 

congestion window is again set to one packet, which 

inevitably puts the sender’s in to the Slow Start state. If 

congestion was specified by duplicate acknowledgement 

(ACK), the Fast Retransmit and Fast Recovery algorithms are 

appealed [8]. As data received during the Congestion 

Avoidance mode, the congestion window is increased. 

However, the Slow Start mechanism is only applied to the 

intermediate point where congestion originally happened. This 

intermediate point was recorded prior as the new transmission 

window. After this intermediate point, the congestion window 

size is incremented by one segment for each of the segments 

in the transmission window that are to be acknowledged. This 

approach will force the sender to more slowly produce its 

transmission rate, as it will approach to the point where 

congestion has previously been detected [12]. 

III. FEW VARIANTS OF TCP 

A.  TCP SACK  

The congestion control algorithms performed in our 

TCP Sack are the conservative extension of the TCP Reno's 

congestion control mechanism [9], in that it uses the same 

algorithm for increasing or decreasing the cwnd and make 

minor changes in the different congestion control 

mechanisms. Adding the Sack to the TCP does not change 

the basic principle of congestion control algorithms. The 

TCP Sack implementation reserves the properties of TCP 

Tahoe and TCP Reno are processed out-of-ordered packets, 

and uses re-transmit timeouts as the recovery method of last 

possibility. The main difference between the TCP Sack 

implementation and the TCP Reno implementation is that the 

behavior when multiple segments are dropped from single 

window of data. As in TCP Reno, the TCP Sack 

implementation enters into Fast Recovery state when the data 

sender receives TCP re-transmits duplicate acknowledgments. 



International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | May-Jun 2016 
Available Online@www.ijtrd.com   357 

The sender re-transmits the packet and reduces the congestion 

window by half. 

During Fast Recovery [6], TCP Sack maintains the 

variable called pipe that represents the predictable number of 

packets unsettled in the specific path. (It varies from the TCP 

Reno implementation mechanism). The sender sends 

only new or re-transmitted data when the assessed number of 

segments in the route is lesser than the congestion window. 

The pipe variable is increased by one wh en  the sender either 

transmits a new segment or re-transmits the old packet. It is 

decreased by one segment whenever the sender received a 

duplicate ACK packet with a TCP Sack option reporting that 

new data is received at the receiver side. Using of the pipe 

variable decouples the choice of when to send the packet from 

the decision of which the packets to trannsfer. The sender 

manages a data structure (DS), the scoreboard that remembers 

the acknowledgments from previous TCP Sack options. 

Whenever the sender is a b l e  t o  allow sending a packet, it 

re-transmits whenever a packet is loosed at the receiver. If no 

such packets and the receiver advertised window size is 

satisfactorily large, the sender (source) then sends a new 

packet. When a re-transmitted packet is itself dropped, the 

TCP Sack implementation detects the drop with a re-transmit 

timeout, re-transmitting the dropped segment and then 

performs slow start. The sender enters in to the Fast Recovery 

whenever the recovery ACK is established acknowledging all 

the data that was outstanding. 

Problems- The main problem with TCP Sack is that it has 

the selective acknowledgments that are not providing by the 

receiver. To appliance TCP Sack we will need to provide 

selective acknowledgments. It is very difficult task. 

B.  TCP FACK 

Forward Acknowledgments (FACK) also aims at 

best recovery from the multiple packet losses [3]. The term 

"Forward ACK" derives from the fact that the procedure keeps 

track of the properly received data by the largest sequence 

number. The term "forward ACK" originates from the fact 

that the procedure keeps track of the appropriately received 

the data by the largest sequence number [3]. In TCP Fack, 

TCP maintains two extra variables. TCP Fack, which signifies 

the forward maximum segments that have been acknowledged 

through the receiver over the TCP Sack option. Using these 

two TCP variants, the amount of owing data during recovery 

can be assessed as forward-most of the data. TCP Fack 

controls this value (the amount of uncertain data in the 

network) to be with in the single segment of congestion 

window (cwnd), and it remains constant in the fast recovery 

mode. The TCP Fack variable is also used to generate the 

Fast Retransmits more promptly [14]. 

C.  Rate Based Pacing (Rbp) 

In the prior work has suggested that the “slow-start 

restart'' problem is the provider to low performance of P-

HTTP over the TCP. The solution to the problem is to send 

the segments at a certain pace until we may get the ACK 

clock running again [6]. This rate should be based on the 

fraction of prior estimates of the data transfer rate, since that 

is the nearby estimate of accessible bandwidth that we have 

to believes that the modification referred as Rate Based 

Pacing (RBP). It will give better performance for the 

situations mentioned in the problem. 

RBP Implementation – It requires the below changes to the 

TCP: 

1. Estimation of the bandwidth. 

2. Calculate- the window we expect to send in RBP and also   

    the time between the packets in that window. 

3. The mechanism that clocks the packets sent in the RBP. 

IV. SIMULATION AND RESULTS 

The Network simulator NS2 used for simulation. The 

topology we are using is a wired topology with 10 nodes 

represented in the figure. Here the nodes are represented as 

node 0, 1, 2. These are connected through node 3 using a 

duplex-link and node 3 is linked with node 4 and 5 with 

duplex-link and node 4 and 5 are also linked with the node 6 

via duplex-link, and the node 6 is linked with node 7 and 

this node is linked with node 8 and 9 with duplex- link. 

Various TCP agents are attached with node n0 and send the 

File Transfer Protocol (FTP) data to the matching destination 

node 8 and node 2 that is in the source node for the node 9 

and then sends  the packets to the destination node. We 

discuss the consequences of the simulated scenario of 

various TCP variants, and distinguish these results. After 

gaining the results a graph is to be specified and measure the 

performance of various TCP variants. 

 
Figure 1: Topology for implementation of various TCP 

variants. 

Figure 1, we use various performance metrics like 

Throughput, Packet Delivery Ratio, No of packet loss, 

Average End to End delay and the Jitter applied on TCP 

variants. Above topology is used to find the performance of 

various TCP variants. On the source of those parameters 

which comprised in the practical experiment, the values are 

generated in the experiment that is shown in table given 

below. From those data various graphs are to be drawn. 

 

Table 1: Performance metrics of various TCP variants 

A. Throughput: Throughput is calculated as the node 

throughputs of data transmission to the total number of 

nodes. 

 

 

TCP Fack TCP Sack RBP 

Throughput 4003.355 4350.885 4679.154 

Packet Losses 50 72 0 

Packet Delivery 

Ratio 

98.629 99.761 99.767 

End to End Delay 2327.5 2256.773 1469.464 

Jitter 1515.61 3566.29 405.1 



International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | May-Jun 2016 
Available Online@www.ijtrd.com   358 

 
Figure 2: Throughput comparison of TCP Fack, TCP Sack, 

RBP 

Figure2, Shows the throughput in the form of bytes. It shows, 

RBP gives the better performance in terms of throughput 

compared to various TCP variants.  

 

B. Number of packet Loss:  Packet loss is calculated based on 

the number of packets sent and packets received. Number of 

Packet loss= Number of packets sent – Number of packets 

received. 

 
Figure 3: Packet loss comparison of TCP Fack, TCP Sack, 

RBP 

Figure 3, shows the packet loss in the form of bytes. It shows 

that RBP gives better performance in terms of packet losses 

compares to TCP Sack and TCP Fack. 

C. Packet Delivery Ratio: Packet delivery ratio is performed 

using the number of packets successfully delivered to the 

receiver. It is to performed as the total number of packets 

successfully sent to be number of packets that are generated.  

 

Figure 4: Packet Delivery Ratio comparison of TCP Fack, TCP 

Sack, RBP 

 

From Figure 4, packet delivery ratio of various TCP variants is 

represented in the form of bytes. It shows that RBP has better 

performance in terms of packet delivery ratio than different 

TCP variants.  

D. Jitter:  Jitter is a time variation of between the packets 

leaves from one to another. 

 
Figure 5: Jitter of TCP Fack, TCP Sack, RBP 

From Figure 5, Jitter of various TCP variants are compare with 

RBP. It shows that RBP has the better performance compares 

to TCP Fack and TCP Sack. 

E. Average Delay: An average end to end delay is calculated 

using the delay of each packet delivered between the sender and 

the receiver.  

 

Figure 6: End to End Delay of TCP Fack, TCP Sack, RBP 

From figure 6, end to end delay of various TCP variants are 

compared. From the above graph, RBP has better performance 

compares to the TCP Fack and TCP Sack. 

CONCLUSION 

In this paper, performance of RBP compares with 

various TCP variants like TCP Sack and TCP Fack using 

NS2 simulator using different performance metrics like 

Throughput, End to end delay, Jitter, Packet delivery Ratio 

and packet loss. The results shows that the overall 

performance of various TCP Variants. From the above 

specified graphs, it shows that RBP has the highest 

performance and efficiency in the simulation topology. It 

has been represented in table 1 and also various figures from 

figure2 to figure 6. 

  



International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | May-Jun 2016 
Available Online@www.ijtrd.com   359 

References 

[1] M. Allman, V. Paxson, and W. Stevens. TCP 

Congestion Control, April 1999, RFC 2581. 

[2] Mathis and J. Mahdavi. Forward acknowledgement: 

re-fining TCP congestion control. SIGGCOM 

Computer Communications - 26(4): 281–291(1996). 

[3] Sally Floyd and Kevin Fall. Promoting the Use of End-

to-End Congestion Control in Internet. IEEE/ACM 

Transactions on Networking, August 1999. 

[4] L.S. Brakmo, S. W. O’Malley, and L. L. Peterson,” 

TCP Vegas: new techniques for congestion detection 

and avoidance”, SIGGCOM Computer 

Communication., 24(4):24–35,(1994). 

[5] W. Richard Stevens,” TCP/IP Illustrated, Volume 1: 

The Protocols”. Addison Wesley (1994). 

[6] W. Stevens. TCP Slow Start, Congestion Avoidance, 

Fast Retransmit, and Fast Recovery Algorithms, 

January 1997, RFC 2001 

[7] M. Allman, V. Paxson, and W. Stevens. “TCP 

congestion control”. RFC 2581(1999). 

[8] ACM Computer Communication Review, volume 26, 

pages 5-21(1996). 

[9] K. Leung and Vivtor O.K. Li, “Transmission 

Control Protocol in wireless Networks: issues, 

approaches and Challenges,” IEEE Communications 

Survey, Vol. 8-Issue 4, pages : 64-79(2006). 

[10] D.D.Clark, “Window and Acknowledgement Strategy 

in TCP”, RFC 813(1982). 

[11] S Sraw, G Singh, A Kaur, “A Survey of Multicast 

Routing Protocols in MANETS”, In the proceedings 

2nd International Conference on Futuristic Trends in 

Engineering & Management 2014 (ICFTEM-2014), 

Vol.3 , Issue.4 , pages  :220 224( 2014). 

[12] L.S.Brakmo, L.L. Peterson, “TCP Vegas: End to 

End Congestion Avoidance on a Global Internet”, 

IEEE Journal on Selected Areas in Communication, 

vol.13, pages: 1465-1490, (1995). 

[13] Sally Floyd and Van Jacobson. Random Early 

Detection Gateways for Congestion Avoidance. 

IEEE/ACM Transactions on Networking, August 1993. 

[14] K.  Fall, S.  Floyd, “Simulation- based comparisons 

o f  TCP Tahoe, Reno, Sack”, In ACM Computer 

Communication Review, volume 26, pages 5-21(1996). 

[15] Ishac J, Allman M. On the performance of TCP 

spoofing in satellite networks. In Proceedings of IEEE 

MILCOM’01, 2001; 700–704. 

[16] Akyldiz IF, Morabito G, Palazzo S. TCP-Peach: a new 

congestion control scheme for satellite IP networks. 

IEEE/ ACM Transactions on Networking 2001; 

9(3):307–321 

[17] Henderson TR, Katz RH. Transport protocols for 

internet-compatible satellite networks. IEEE Journal on 

Selected Areas in Communications 1999; 17(2):326–

334. 

[18] Floyd S, Henderson T. The NewReno modification to 

TCP’s fast recovery algorithm. Request for Comment 

2582, April 1999, IETF. 


