
International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2016
Available Online@www.ijtrd.com 360

A Holistic Approach to Load Balancing of Cloud

Services
1
E. Ravi Kumar and

2
K. Kotaiah Swamy,

1
Associate Professor,

2
Assistant Prof (Sr Grade),

1,2
Department of Information Technology, Vardhaman College of Engineering, Hyderabad, India.

Abstract: The cloud computing is a kind of Internet-based

computing that makes available shared processing resources, data

and storage space to computers and other devices on demand by

pay as you go. The Load balancing in cloud computing

environment has a great impact on the performance; Good load

balancing makes cloud computing more efficient and improves

user satisfaction. This paper (research) is going to address the

issues like an optimal and feasible solution to cloud user by

providing better utilization of the resources with less amount of

time and fast throughput of the system.

Keywords: Cloud Computing, Load Balancing.

I. INTRODUCTION

Cloud computing is a new computing paradigm that involves a

real-time communication network for large scale distributed

computing environment, with extensive use of virtualization.

Cloud computing does not mean the applications that are

delivered over the internet, but also the underlying hardware and

the software systems that are present in the data centers. The

services being provided are termed under Software as a Service

(SaaS), while the system software and the hardware make up the

Cloud. If t he Cloud is made available on a pay-per-use basis, it

is called a Public Cloud; the service being sold is Utility

Computing. On the other hand, there are some internal data

centers of some organizations that are not made available to the

public.

In Cloud computing environment, different tasks may arrive

randomly at different times and use CPU time randomly which

increase the burden on one resource may heavily while the other

resources may be free or very less utilized. This increases the

load on one resource heavily such that at one point in time it may

not handle the requests. A proper load balancing approach may

solve these problems by fairly distributing load among different

processing elements.

According to the Cloud Security Alliance, the top three threats in

the cloud are Insecure Interfaces and API's, Data Loss &

Leakage, and Hardware Failure—which accounted for 29%, 25%

and 10% of all cloud security outages respectively.

II. RELATED WORK

 We have plenty of load balancing algorithms for load balancing.

Load balancing among different nodes of distributed systems can

be done static algorithms and dynamic algorithms.

A. Static Algorithms

Static algorithms better suitable for those systems where load

variation is low. In these algorithms, the load will be distributed

evenly among the systems. Prior knowledge of system resources

is required for these algorithms so that decision making is easy

for load shifting does not depend on the current state. Some of

the algorithms are discussed here.

Random: The random algorithm is static load balancing

algorithm in nature[3]. A random number generator is used to

select the nodes randomly[4]. Processes are handled by node n

with a particular probability p [5]. The order of the process

allocation is maintained for each processor. The algorithm works

well with equally loaded processes but will not work if the loads

are of different computational complexities. The algorithm does

not follow a deterministic approach.

FCFS: The simplest load balancing algorithm is First Come First

Serve algorithm [5] where each load balancer maintains a job

queue in which job waits for its turn to get executed. The benefits

of FCFS are being fast and simple. But FCFS results in a poor

overall response time in case of small tasks have to wait for a

longer time because of being at a later place in the queue.

B. Dynamic Algorithms

 Dynamic algorithms are designed to deal with systems with

irregular load variations. These algorithms try to search the

servers with low weights so the dynamic requests can be

assigned in the system. The load balancer will check the memory

and the CPU usage. If the usage is very high then the client

request will be transferred to the next available node.

Weighted RR: In Weighted RR method, a random weight is

defined for each system. The number of connections that each

machine receives over time is proportionate to the defined ratio

weight. This algorithm works because whenever we define

weighted assignments then requests are sent by the load balancer

to machine for each request to the others. This algorithm works

smoothly but has a problem because of the static definition of the

weights in the beginning.

Dynamic Round Robin: DRR [4] is similar to Weighted Round

Robin; the difference is that the servers are monitored

continuously and the weights are kept on changing. It makes use

of various aspects of real-time server performance analysis, like

the current number of connections per node or the fastest node

response time to distribute the connections. The drawback with

this algorithm is that it is rarely available in a simple load

balancer, because of its dynamic nature.

Throttled load balancing algorithm: In this algorithm [7],

whenever a client request is received, the load balancer tries to

find a suitable Virtual Machine to perform the required

operation. The algorithm processes the client by maintaining a

list of the all available VMs. In order to speed up the lookup

process indexing is performed first. The request from a client is

accepted if a match is found on the basis of size and availability

of the machine. The VM is then allocated to the client. However,

if a VM that matches the criteria is available, then the load

balancer queues up the request.

International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2016
Available Online@www.ijtrd.com 361

Least connections: In this dynamic load balancing method, the

load balancer records the number of connection for each server,

increasing the number when a new connection is dispatched to it,

and decreasing the count when connection finishes or the timeout

happens [3]. Using this algorithm, the system passes a new

connection to the server that has the least number of current

connections. As this method is dynamic in nature, it distributes

connections based on various aspects of real-time server

performance analysis, like the current number of connections per

node or the fastest node response time. Least Connections

method [4] works best in the environments where the servers or

other equipment that are being load balanced have similar

capabilities. This Application Delivery Controller method is

rarely available in a simple load balancer.

III. PROPOSED METHODOLOGY

In this paper, a new methodology has been proposed by

combining the existing algorithms to produce a new load

balancing algorithm which can deal with dynamic load balancing

with low cost, high throughput.

Round Robin with Active Clustering (RRAC) Algorithm:
RRAC is a dynamic load balancing algorithm which is a

combination of round robin and active clustering algorithms. The

Round Robin algorithm [3] allocates the nodes to fulfill the

requests in a round-robin manner for a definite time slice, i.e.

according to the process allocation order that is maintained

locally. This serves the advantage of the fast response in case of

equal workload distribution amongst the processes. However, the

job processing time for different processes is not the same. So,

some nodes may be heavily loaded while some others may

remain idle. Active clustering is an enhanced method of random

sampling, where this algorithm works on the principle of

grouping similar nodes together and start working on these group

nodes [6]. This method uses the resources efficiently thereby

increases the throughput and performance of the system by using

high resources. In this, approach, a technique called matchmaker

is introduced. When an execution starts in a network, the process

gets initiated and searches for the next matching node said to be

match-maker which should satisfy the criteria that it should be

the different one from the former one. Once the matchmaker is

found the process gets initiated and as soon as the process gets

over the matchmaker gets detached from the network. Thus, this

is an iterative process in the network to balance the load

efficiently. This method may be particularly useful in

environments where servers are distributed across different

logical networks.

RRAC Algorithm

Assigning ranks:

1. for each process in DAG calculate average execution

time on all processors

2. if a process is a final process

3. Rank of process = average of the process

4. Else if

5. Rank of process = average of process +

max(rank(predecessors)) + channel weight

6. end if

7. end for

Mapping Logic:

1. for each process in the list of ordered processes

2. if the process is the first process in the list then

3. map process to the processor with minimum execution

time

4. else

5. if the process and its predecessor on the same processor

pj

6. comm_time = 0

7. else

8. comm._time=communication time between two nodes

9. end if

10. for each processor

11. process _execution_time = excution_time of process on

processor + comm_time + predecessor_excution time

12. end for

13. end for

14. map the process to the processor with minimum

total_execution_time

 Clustering Method

1. Put each task in the cluster

2. Generate the list of all the triplets

3. Sort the triplets by decreasing count and by decreasing

 Amount of communication

4. for each triplet do

5. if the geometric or temporal criterion is satisfied then

6. combine the two clusters

7. end if

8. end for

CONCLUSION

As a part of my research work, I have gone through the different

methodologies from literature for the given proposal and my

experimental results provide the better utilization of cloud

resources (throughput, process time).I am going to implement the

proposed system by experimenting with software tools like

MAT-Lab, NS-Tool. The future work will be going to have an

Experimental setup and results comparisons.

References

[1] Ms.Shilpa D.More, "Reviews of Load Balancing Based on

Partitioning in Cloud Computing", International Journal of

Computer Science and Information Technologies, Vol. 5 (3)

, 2014, 3965-3967.

[2] B. Naresh Kumar Reddy and N.Venktram, “An Efficient

Data Transmission by using Modern USB Flash Drive,”

International Journal of Electrical and Computer

Engineering, ISSN: 2088-8708 Vol. 4, Number 5, pp. 730-

740, 2014.

[3] Analysis of Load Balancing Techniques in Cloud

Computing. K, Sidhu A and Kinger, Supriya. 2, Fatehgarh

Sahib : International Journal of Computers & Technology,

April 2013, International Journal of Computers &

Technology, Vol. 4. ISSN 2277-3061.

[4] B. Naresh Kumar Reddy and Narasimha, “An Efficient

Online Mileage Indicator by Using Sensors for New

Generation Automobiles,” IEEE Bangalore Section

technically co-sponsor on 2nd International Conference on

International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2016
Available Online@www.ijtrd.com 362

Advanced Computing, Networking and Security, pp. no.

198-203, Dec, 2013

[5] A Review of the Load Balancing Techniques at Cloud

Server. Bala, Kiran, et al. 1, Chandigarh : International

Journal of Advances in Computer Science and

Communication Engineering, March 2014, International

Journal of Advances in Computer Science and

Communication Engineering, Vol. 2. ISSN 2347-6788.

[6] B. Naresh Kumar Reddy, M.H.Vasantha, Y.B.Nithin Kumar

and Dheeraj Sharma, “A Fine Grained Position for Modular

Core on NoC,” IEEE International Conference on Computer,

Communication and Control (IC4), pp. 1-4, 2015

[7] B. Naresh Kumar Reddy, M.H.Vasantha, Y.B.Nithin Kumar

and Dheeraj Sharma, “Communication Energy Constrained

Spare Core on NoC,” 6th International Conference on

Computing, Communication and Networking Technologies

(ICCCNT), pp. 1-4, 2015.

