
International Journal of Trend in Research and Development, Volume 2(6), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Nov - Dec 2015
Available Online@www.ijtrd.com 317

Directory Service Integration and Its Adoption Approaches

in Linux Server Farms
*Amadi E.C., Akpabio N.O., Nwaobilo F. and Azike N.U.,

*P.hD Researcher & Post Graduate Scholars,

Department of Information Management Technology, Federal University of Technology Owerri, Nigeria.

Abstract: Microsoft SharePoint has been adopted by a

number of companies today as their content management

tool because of its ability to create and manage

documents, records, and web content. It is described as an

enterprise collaboration platform with a variety of

capabilities, and thus it stands to reason that this platform

should also be used to surface content from analytical

applications such as SAS and the R language. SAS

provides various methods for surfacing SAS content

through SharePoint.

This paper describes one such methodology that is both

simple and elegant, requiring only SAS Foundation. It

also explains how SAS and R can be used together to

form a robust solution for delivering analytical results.

The paper outlines the approach for integrating both

languages into a single security model that uses Microsoft

Active Directory as the primary authentication

mechanism for SharePoint. It also describes how to

extend the authorization to SAS running on a Linux

server where LDAP is used. Users of this system are

blissfully ignorant of the back-end technology

components, as we offer up a seamless interface where

they simply authenticate to the SharePoint site and the

rest is, as they say, magic.

Keywords: Linux Server, Microsoft Sharepoint, Linux

Shell Script, SAS Integration, Microsoft Active Directory.

I. INTRODUCTION

It is becoming quite popular to create the web service

reports and share them with the group of users.

SharePoint is a very popular content management tool

where users store and share their reports with their team

in a secured way, by granting the access to SharePoint

page.

In this paper we have used SAS Foundation for all SAS

computation, R-Shiny for web service part and

SharePoint for display/ store the reports. Though SAS

Foundation has been powerful statistical tool, but creation

of web services through SAS Integration Technology® is

still bit complex (considering its multitier architecture

concept and technology). We used R and Shiny to help

basic users create web services. This solution is built for

users who are using SAS Foundation and don’t have

enough exposure of SAS Integration Technology®. R

(shiny) is open source, easily available and simplifies the

creation of interactive web applications. Use of SAS

Integration Technology® provides more features to users,

but at a higher cost and user’s learning.

A. Architecture

The Integrated system architecture is designed in such a

way that the complete setup gives a single point of entry

to all the users. There are three basic building blocks to

achieve the end to end result.

 SAS Foundation

 R (Shiny)

 Microsoft SharePoint

Security of integrated system is maintained through

following

 Lightweight Directory Access Protocol (LDAP)

 Microsoft Active Directory (MS AD)

As explained in figure 1, SharePoint is used to display the

request page of the web services created in Shiny/R.

When a user accesses the web browser, the user id is

validated against the set of permissible users via AD

security. Once that validation passes, the user is allowed

to place the request. It helps in providing additional

security by encapsulating the server details of R web

service.

When the user sends a request, R web service captures

the respective selected parameters and passes it to the

SAS program for execution. This process of messaging to

SAS is secured through OS security (LDAP). The SAS

program executes as per the user’s input parameters

received through R web service. After successful

execution of SAS, result is shared back to SharePoint for

display in the specified layout.

Figure 1: Architecture Diagram

International Journal of Trend in Research and Development, Volume 2(6), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Nov - Dec 2015
Available Online@www.ijtrd.com 318

B. Approach

There are three approaches to achieve the communication

between SAS and R:

 SAS and R installed on different servers.

 SAS and R installed on different servers with a

shared file system.

 SAS and R installed on the same server

II. SAS AND R INSTALLED ON DIFFERENT

SERVERS

In the first approach SAS Foundation and R are installed

on different servers. All input and output communications

between SAS and R servers occur through Linux Shell

Script. R web service captures input parameters in a file

from the webpage at Share Point and then the file is

passed on to SAS code residing on SAS server using

SSH. SSH is the mechanism to send the input to code

from R web service and then bring the SAS result back to

R server to display (figure2).

It’s always good to capture all input parameters required

by SAS code in one file and then SSH it to SAS server. If

number of SSH increases then total processing time to

display the result increases. This is because of the

additional message and response time; each time SSH is

done between the servers. Usually, the result is displayed

immediately after the request from user (interactive

mode), but application can also be modified to facilitate

the scheduling of the SAS jobs in batch mode. In case of

batch jobs, there are various methods of notification

which can be opted to send the notification once job is

completed. The presentation of result on the web page

can be controlled via R codes. Once SAS program is

executed, the expected result generated on SAS server (to

be displayed at SharePoint) is pulled on to R server.

Figure 2: Architecture Diagram of R and SAS installed

on different servers

The diagram below (figure 3) demonstrates the

information flow between the various components of the

application for the cited example; SERVER.R and UI.R

as R scripts, which create the web service with the help of

Shiny. R script invokes the Linux script. This Linux

script executes the SAS program and provides the result

back. Based on requirement, Linux scripts can be

modified much more to fulfil the application specific

requirement.

III. SAS AND R INSTALLED ON DIFFERENT

SERVERS WITH A SHARED FILE

SYSTEM

As given in below diagram (figure 4), R and SAS servers

have shared file system. Use of shared file system,

eliminates the process of SSH and sends the files between

the servers. Once the input and output files are written as

per given parameters, the files are available automatically

for use through shared file system.

Figure 3: Flow Diagram for Shared File System for SAS

and R Servers

IV. SAS AND R INSTALLED ON THE SAME

SERVER

Below figure 5, explains the architecture of R and SAS

installed on same server. Since, both are installed on

same server, it eliminates the process of SSH and sending

the information between the servers. The file generated

by one process is readily available to the other process

without any intervention of any intermediate process.

The overall process explains that the process of

communication happens with the help of writing the files

and making it available for other processes.

Figure 4: Flow Diagram for SAS and R installed on the

Same Server

V. PROCESS FLOW

 There are five basic steps to create end to end

solution. But it totally depends on requirement and

coding skill (scripting and R/SAS coding) to create

dynamic and menu driven reports.

 Write SAS and R program

International Journal of Trend in Research and Development, Volume 2(6), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Nov - Dec 2015
Available Online@www.ijtrd.com 319

 Use Shiny to create web service and execute SAS

programs at backend.

 Execute R and display the result in SharePoint

through R web Service.

 Use Active directory to authenticate the user to

access the web service.

 Use LDAP to secure the SAS program execution on

SAS server.

This paper does not use any SAS BI technology to create,

web portal. Only SAS Foundation is used to run SAS

programs. Writing SAS and R programs is out of scope

of this paper. Developers write their own SAS/ R code as

per the business requirement. It is assumed that users

have basic understanding of SAS, R and Shiny to achieve

this functionality.

A. R Script – User Display

ui.R -
This is the user interface script which is used to control

the appearance and layout of the web page. It facilitates

the page created, to automatically adjust to the

dimensions of the user’s browser window.

In the example below, UI.R gives an option to the user to

select the SAS code to be executed through the drop

down. And then displays the output; back on the side

panel as per the response received from SERVER.R. The

output can be in the form of table, charts, figures, graphs

etc. depending upon the response results returned by the

SAS code.

ui.R

library(shiny)

shinyUI(pageWithSidebar(

headerPanel("SAS Code Execution in R Web Service."),

sidebarPanel(uiOutput("SAS_Pgm")),

mainPanel(

list(tags$head(tags$style("body {background-color:

#ADD8E6; }"))),

h3("Report from SAS Server !", style = "color:blue"),

h4("Below Report Is From The SAS Code Selected In

Left Panael.", style = "color:blue"),

htmlOutput("inc")

)

))

B. R Script – Execute With SAS

server.R –
The server script controls the actions of the application as

per the instructions defined in it. In the example, it

requests the SAS server via a script to provide the list of

available SAS codes and provides the list to UI.R to

make it available for display at the webpage.

server.R

library(shiny)

shinyServer(function(input, output) {

First UI input (SAS Code)

Please refer Appendix 1 for the code

})

C. Shell Script - List of SAS Codes from SAS Server

Saslist.sh -
This script is being called by SERVER.R (R script). This

script will be executed at SAS server and find all SAS

codes from SAS server and bring the list back to R

server. This list will be used to display the list of

program, in the dropdown provided to the end user. User

can select any of these programs to execute.

#saslist.sh

#!/bin/bash

cd /home/ zixa897/SAS-R2

ls *.sas> /home/ zixa897/SAS-R2/saslist.text

scp /home/ zixa897/SAS-R2/saslist.text

zixa897@rsasfusion:/opt/shiny- server/samples/sample-

apps/R-SAS/

FILE="/home/ zixa897/SAS-R2/saslist.text"

while read line; do

scp "$line" zixa897@rsasfusion:/opt/shiny-

server/samples/sample-apps/

R-SAS/

done< $FILE

D. Shell Script - Execute SAS Code

r.sh –
After selecting the SAS code, name of selected SAS

program will be passed as parameter to this script. This

shell script will be called by R Script after selecting the

SAS code from UI. This script will execute the selected

SAS code and return the output file to R server, so that it

can be displayed into R web service.

r.sh

#!/bin/bash

cd /home/zixa897/SAS-R2

saspgm=$(cat outfile.txt)

sas $saspgm

scp r-sas.lst zixa897@rsasfusion:/opt/shiny-

server/samples/sample-apps/

R-SAS

scp bilingual-report.html zixa897@rsasfusion:/opt/shiny-

server/samples/sample-apps/R-SAS

scp univariate-report.html

zixa897@rsasfusion:/opt/shiny-

server/samples/sample-apps/R-SAS

scp graph.html zixa897@rsasfusion:/opt/shiny-

server/samples/sample-apps/

R-SAS

scp gchart.png zixa897@rsasfusion:/opt/shiny-

server/samples/sample-apps/

R-SAS

International Journal of Trend in Research and Development, Volume 2(6), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Nov - Dec 2015
Available Online@www.ijtrd.com 320

E. SAS Code – Produce Report

rsasunivar.sas -
This code is one of the codes listed as an option in the

drop down on the web portal in the below stated example.

The SAS code selected by the user is sent to the Linux

script as an input parameter. Based on the input received

the Linux script invokes the appropriate SAS code. The

SAS code executes and returns the result back. Then the

script transfers the result back to R server, from where

the results are displayed.

Here in this example, as the user selected to calculate the

univariate, the SAS program RSASUNIVAR. SAS is

called.

ods html file='univariate-report.html';

options locale=en_US;

title "Executed in &sysvlong by &sysuserid on machine

&SYSTCPIPHOSTNAME";

title2 "At : %sysfunc(datetime(),nldatm.)";

footnote "%sysfunc(datetime(),nldatm.)";

procunivariatedata=sashelp.class;

var age;

run;

ods html close;

Below output (display 1) is from above SAS code in R

web service.

Display 1: WebService Screen for End Users

VI. EXECUTE R AND DISPLAY THE RESULT

IN SHAREPOINT THROUGH R WEB

SERVICE

Once R web service is ready, it can be consumed by

SharePoint web portal with the help of Page viewer web

part. The page viewer web part has capability to consume

data hosted in the other portals or web application (SAS).

This will not only help to display the other portal/page

content even SharePoint inbuilt security can be applied

for that particular content or page.

In SharePoint, a page is designed to provide many

options to the user like a button or link through which

corresponding web service can be called. The page

viewer web part provides the capability to display the

content or web page in SharePoint; it allows placing

content and controls the content’s appearance on a

SharePoint page in a synchronous mode. So, the host

page (external web page/SAS) and the iframe (SharePoint

page) are two different pages, the browser can load them

in parallel, resulting in better performance.

Display 2: Main User Screen for Category Selection

In display2, there are three buttons created in a

SharePoint page. Each button is associated with R web

services. When a user clicks the button, the

corresponding R web service is invoked. Page viewer is

used here to incorporate the R web-services in SharePoint

page.

Display 3: Sample Output from a SAS Code on User

Screen

VII. RESOURCE UTILIZATION AND CODE

EXECUTION

Any installation (R or SAS) is out of scope of this paper.

The use case presented in this paper has SAS and R

installed on separate Linux servers. All SAS codes reside

and execute on SAS server and R processing happens at

R server. SharePoint page displays the results R web

service.

When the web service is called, it executes the SAS jobs

residing on SAS server. SAS job executes with available

resources on SAS server. The example given in this paper

executes the selected SAS code, from R web portal in

SharePoint. Frequency of SSH between SAS and R

server totally depends on the user’s requirement and

overall all I/O.

Performance and execution time of SAS code depends on

SAS server capacity (provided the fact that SAS and R

servers are separate server) However, the server resource

and architecture can be bounded by the organization

policies and decisions.

International Journal of Trend in Research and Development, Volume 2(6), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Nov - Dec 2015
Available Online@www.ijtrd.com 321

CONCLUSION

The architecture diagrams, explanations, sample code,

and discussions offered in this paper help to understand

the utilization of SharePoint and R to share/display the

SAS report. This paper describes a prototype how SAS

and R can work hand in hand and demonstrates the use of

powerful functionalities of SAS/ R in a single

application. This can be further enhanced based on the

user’s R/ Linux scripting capabilities.

APPENDIX 1:
output$SAS_Pgm<- renderUI({

selectInput("sas",

"Select SAS Code:",

choices = saspgm_list(),

#as.character(saspgm_list),

selected = input$sas,

multiple = FALSE

)

}

)

saspgm_list<- reactive({

a <- try(system("ssh zixa897@sasr /home/ zixa897/SAS-

R2/saslist.sh",

intern = TRUE))

setwd("/opt/shiny-server/samples/sample-apps/R-SAS")

sas_list<- try(system("ls *.sas", intern = TRUE))

return(sas_list)

}

)

runsas<- reactive({

if (!is.null(input$sas))

wrtfile2()

a <- try(system("ssh zixa897@sasr /home/ zixa897/SAS-

R2/r.sh",

intern = TRUE))

}

)

getPage<-function() {

runsas()

setwd("/opt/shiny-server/samples/sample-apps/RSAS")

a <- try(system("ls -lrt> test1.text", intern = TRUE))

if (input$sas == "r-sas.sas")

return(includeHTML("bilingual-report.html"))

if (input$sas == "bargraph6.sas")

return(includeHTML("graph.html"))

if (input$sas == "r-sas-univariate.sas")

return(includeHTML("univariate-report.html"))

}

wrtfile<-reactive({

if (!is.null(input$sas))

setwd("/opt/sihiny-server/samples/sample-apps/RSAS")

fileConn<-file("/opt/shiny-server/samples/sample-apps

/RSAS/output.txt")

writeLines(c("$sas"), fileConn)

close(fileConn)

}

)

wrtfile2<-reactive ({

if(!is.null(input$sas)

setwd("/opt/shiny-server/samples/sample-apps/RSAS")

sink("outfile.txt")

cat(input$sas)

sink()

try(system("scp /opt/shiny-server/samples/sample-

apps/RSAS/outfile.txt

zixa897@sasr:/home/ zixa897/SAS-R2", intern =

TRUE))

}

)

output$inc<-renderUI({getPage()})

References

Website:

1. http://en.wikipedia.org/wiki/R(programming_langua

ge)

2. http://en.wikipedia.org/wiki/SAS(software)

3. http://en.wikipedia.org/wiki/SharePoint#Configurati

on_and_customization

Publication:

[1] Andersson, V. O.; dos Santos, R. T.; Tillmann, A. L.

C. &Noguez, J. H. S. COBALTO Webservice:

Soluçãoparaconsistência de informações. Resumo

Publicadona VIII Workshop de Tecnologia da

Informação e Comunicação das IFES (2014).

[2] Barros, F. Mercado de software nacionalvaicrescer

400% em 10 anos.Disponívelem:

<http://convergenciadigital.uol.com.br/cgi/cgilua.exe/sys/

start.htm?infoid=32006>. Acessadoem 10/09/2014,

(2012).

[3] Cerami, E. Web services essentials: distributed

applications with XMLRPC,SOAP, UDDI& WSDL.

O'Reilly Media, Inc., (2002)

[4] Costa, C., Melo, A. C., Fernandes, A., Gomes, L. M.

& Guerra, H. Integração de Sistemas de

InformaçãoUniversitários via Web Services.Actas da 5ª

ConferenciaIbérica de Sistemas y Tecnologias de

Información, p. 290-295 (2010).

[5] Coulouris, G., Dollimore, J., Kindberg, T. & Blair, G.

SistemasDistribuidos-: Conceitos e Projeto. Bookman

Editora. (2013)

[6] De Mello Jorge, M. H. P., Laurenti, R. &Gotlieb, S.

L. D. Avaliação dossistemas de informaçãoemsaúde no

Brasil. Cad.Saude Colet 18,

07-18 (2010).

International Journal of Trend in Research and Development, Volume 2(6), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Nov - Dec 2015
Available Online@www.ijtrd.com 322

[7] Degan, J. O. C. Integração de dados corporativos:

umaproposta dearquiteturabaseadaemserviços de dados

Unicamp–UniversidadeEstadual de Campinas, (2005)

[8] DGTI. Plano Diretor de Tecnologia da Informação

2011/2012Universidade Federal de Lavras (2011).

[9] Do Carmo, B. & Almeida, D. Uso de Sistemas de

Informaçãogeográfica naavaliação da Microbacia do

Ribeirão das Alagoas, Conceição das Alagoas, Minas

GeraisPublicatio UEPG-CiênciasExatas e da

Terra,Agrárias e Engenharias, 19, 9. (2013).

