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Abstract: An image is a 2D rectilinear array of pixels.An
image is a two-dimensional function f(x,y), where x and y are
the spatial (plane) coordinates, and the amplitude of f at any
pair of coordinates (x ,y) is called the intensity of the image at
that level. If x, y and the amplitude values of f are finite and
discrete quantities, we call the image a digital image. A
digital image is composed of a finite number of elements
called pixels, each of which has a particular location and
value. Digitization implies that a digital image is an
approximation of a real scene .This paper describes about the
methods of processing the image. Finally, Dithering and
Halftonic techniques were discussed to solve the errors of
gray scale image processing.
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I. INTRODUCTION

Often the domain and the range of an original signal x(t) are
modeled as contin-uous. That is, the time (or spatial)
coordinate t is allowed to take on arbitrary real values
(perhaps over some interval) and the value x(t) of the signal
itself is allowed to take on arbitrary real values (again perhaps
within some interval). As mentioned previously in Chapter
XX, such signals are called analog signals. A continuous
model is convenient for some situations, but in other
situations it is more convenient to work with digital signals —
i.e., signals which have a discrete (often finite) domain and
range. The process of digitizing the domain is
called sampling and the process of digitizing the range is
called quantization.
Most devices we encounter deal with both analog and digital
signals. Digital signals are particularly robust to noise, and
extremely efficient and versatile means for processing digital
signals have been developed. On the other hand, in certain
situations analog signals are sometimes more appropriate or
even necessary. For example, most underlying physical
processes are analog (or at least most conveniently modeled as
analog), including the human sensor motor systems. Hence,
analog signals are typically necessary to interface with sensors
and actuators. Also, some types of data processing and
transmission are most conveniently performed with analog
signals. Thus, the conversion of analog sig-nals to digital
signals (and vice versa) is an important part of many
information processing systems.In this paper, we consider
some of the fundamental issues and techniques in converting
between analog and digital signals. For sampling, three fun-
damental issues are (i) How are the discrete-time samples
obtained from the continuous-time signal?; (ii) How can we
reconstruct a a continuous-time signal from a discrete set of
samples?; and (iii) Under what conditions can we recover the
continuous-time signal exactly? For quantization, the three
main issues we consider are (i) How many quantization levels
should we choose?; (ii) How should the value of the levels be
chosen?; and (iii) How should we map the values of the
original signal to one of the quantization levels?

II. METHODOLOGY

A. Sampling
1. Sampling a Signal :

Figure 1 shows an analog signal together with some

samples of the signal. The samples shown are equally spaced

and simply pick off the value of the underlying analog signal
at the appropriate times. If we let T denote the time interval
between samples, then the times at which we obtain samples
are given by nT where n = . . . , −2, −1, 0, 1, 2, . . .. Thus, the
discrete-time (sampled) signal x[n] is related to the
continuous-time signal by

x[n] = x(nT ).

It is often convenient to talk about the sampling frequency
fs. If one sample is taken every T seconds, then the sampling
frequency is fs = 1/T Hz. The sampling frequency could also
be stated in terms of radians, denoted by ωs. Clearly, ωs = 2πfs

= 2π/T .

Figure 1: Sampling A Analog Signal.

The type of sampling mentioned above is sometimes
referred to as “ideal” sampling. In practice, there are usually

two non-ideal effects. One effect is that the sensor (or digitizer)

obtaining the samples can’t pick off a value at a single time.
Instead, some averaging or integration over a small interval
occurs, so that the sample actually represents the average
value of the analog signal in some interval. This is often
modeled as a convolution – namely, we get samples of y(t) =
x(t) ∗ h(t), so that the sampled signal is y[n] = y(nT ). In this
case, h(t) represents the impulse response of the sensor or
digitizer. Actually, sometimes this averaging can be desirable.
For example, if the original signal x(t) is changing particularly
rapidly compared to the sampling frequency or is
particularly noisy, then obtaining samples of some averaged
signal can actually provide a more useful signal with less

variability. The second non-ideal effect is noise. Whether
averaged or not, the actual sample value obtained will rarely
be the exact value of the underlying analog signal at some
time. Noise in the samples is often modeled as adding (usually
small) random values to the samples.
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Although in real applications there are usually non-ideal
effects such as those mentioned above, it is important to
consider what can be done in the ideal case for several
reasons. The non-ideal effects are often sufficiently small that
in many practical situations they can be ignored. Even if they
cannot be ignored, the techniques for the ideal case provide
insight into how one might deal with the non-ideal
effects. For simplicity, we will usually assume that we get
ideal, noise-free samples.

2. Reconstructing a Signal

We now consider the reverse problem, namely how to
construct a continuous-time signal given discrete-time
samples. Suppose we are given a set of samples x[n] that we
know came from some continuous-time signal x(t). We also
assume we know the sampling rate T , so that we know x(nT )
= x[n]. How can we recover x(t) for other values of t? Unless
we have some additional knowledge or make some
assumptions, this problem clearly has many solutions. Figure
2 shows some discrete-time sam-ples and some possible
continuous-time functions from which these samples could
have been obtained. We have no way to know for sure what
the val- ues of the original signal are at times other than nT .
However, there are some simple estimates we might make to
approximately reconstruct x(t).

Figure 2: Possible Continuous-Time Functions Corresponding
To Samples

Figure 3: Zero-Order Hold Reconstruction

The first estimate one might think of is to just assume that
the value at time t is the same as the value of the sample at
some time nT that is closest to t. This nearest-neighbor
interpolation results in a piecewise-constant (staircase-like)
reconstruction as shown in Figure 4.

Figure 4: Nearest - Neighbour Reconstruction

Actually, instead of nearest-neighbor interpolation, most
devices implement a similar type of interpolation known as
zero-order-hold interpolation shown in Figure 3. This is one
of the most widely used methods and is easy to implement. As
with nearest-neighbor interpolation, this results in a

piecewise-constant reconstruction, but the discontinuities are
at the sample points instead of between sample points. In
other words, the reconstruction is obtained by passing the
discrete-time samples, as a set of impulses, into an appropriate
system. In this case, the system has a very simple impulse
response and can be easily implemented. Likewise, nearest
method is linear interpolation shown in Fig 5.With this
method the ,the reconstruction is a continuous function that
just connects sample values with straight lines.

Figure 5: First Order Hold Reconstruction

3. The Sampling Theorem

Sampling Theorem, also called the Shannon Sampling
Theorem or the Shannon-Whitaker-Kotelnikov Sampling
Theorem, after the researchers who discovered the result. This
result gives conditions under which a signal can be exactly
reconstructed from its samples. The basic idea is that a signal
that changes rapidly will need to be sampled much faster than
a signal that changes slowly, but the sampling theorem for-
malizes this in a clean and elegant way. It is a beautiful
example of the power of frequency domain ideas.

Sampling where ωs >> ω

Figure 6: Sampling Sinunoid At High Rate

To begin, consider a sinusoid x(t) = sin(ωt) where the
frequency ω is not too large. As before, we assume ideal
sampling with one sample every T seconds. In this case, the
sampling frequency in Hertz is given by fS = 1/T and in radians
by ωs = 2π/T . If we sample at rate fast compared to ω, that is
if ωs >> ω then we are in a situation such as that depicted in
Figure 6. In this case, knowing that we have a sinusoid with ω
not too large, it seems clear that we can exactly reconstruct
x(t). Roughly, the only unknowns are the frequency,
amplitude, and phase, and we have many samples in one
period to find these parameters exactly.

Sampling where ωs << ω

Figure 7: Sampling Sinunoid At Too Slow Of A Rate

In the Figure 7 the number of samples is small with respect to
the frequency of sinusoid. This phenomenon is aliasing, if the
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sampling rate is too low.Figure 8 Sampling too slowly
causes aliasing.

In Figure 8, high frequency components alias as lower
frequencies and corrupt the unshifted copy of X (ω). In this
figure, the copies are shown individually, with the overlap
region simply shaded more darkly. What actually happens is
that these copies add together so that we are unable to know
what each individual copy looks like. Thus we are unable to
recover the original X (ω), and hence cannot reconstruct the
original x(t).

III. QUANTIZATION

A. Uniform Quantization:

Quantization makes the range of a signal discrete, so that the
quantized signal takes on only a discrete, usually finite, set of
values. Unlike sampling (where we saw that under suitable
conditions exact reconstruction is possible), quantization is
generally irreversible and results in loss of information. It
therefore introduces distortion into the quantized signal that
cannot be eliminated. One of the basic choices in quantization
is the number of discrete quantization levels to use. The
fundamental trade in this choice is the resulting signal quality
versus the amount of data needed to represent each sample.
With L levels, we need N = log2 L bits to represent the
different levels, or conversely, with N bits

We can represent L = 2N levels.

The simplest type of quantizers are called zero memory
quantizers in which quantizing a sample is independent of
other samples. The signal amplitude is simply represented
using some finite number of bits independent of the sam-ple
time (or location for images) and independent of the values of
neighboring samples. Zero memory quantizers can be
represented by a mapping from the amplitude variable x to a
discrete set of quantization levels {r1, r2..., rL}.

The mapping is usually based on simple thresholding or
comparison with certain values, tk. The tk are called the
transition levels (or decision levels), and the rk are called the
reconstruction levels. If the signal amplitude x is between tk

and tk+1 then x gets mapped to rk.

Figure 9: Quantizing A Gray-Level Image

Figure 9 shows an example of the effects of reducing the
number of bits to represent the gray levels in an image using
uniform quantization. As fewer quantization levels are used,
there is a progressive loss of spatial detail. Further-more,
certain artifacts such as contouring (or false contouring) begin
to appear. These refer to artificial boundaries which become
visible due to the large and abrupt intensity changes between
consecutive gray levels. Using uniform quantization, images
we usually start seeing false contours with 6 or fewer bits per
pixel.ie., about 64 or fewer gray levels. In audio signals, we
can often hear distortion noise about 8 bits per sample or 256
amplitude levels. These figures depend on particular image or
signal.

B. Non Uniform Quantization

It is natural to expect the amount of distortion introduced
depend on the quantizer and we can try to minimize the
distortion by choosing a “good” quantizer

In Fig 10 the original image of 256 8 level 4 levels 2 level
gray levels is shown and near by the     Histogram shows
the distribution of intensity Levels. The both Uniform
quantized and Non-uniform quantized image with equal

Figure 10: Original image,256 gray levels
4 levels is represented clearly.

IV. DITHERING AND HALFTONING

Dithering, coarse quantization often results in the appear-ance
of abrupt discontinuities in the signal. In images, these appear
as false contours. One technique used to try to alleviate this
problem is called dither-ing or psuedorandom noise
quantization. The idea is to add a small amount of random
noise to the signal before quantizing. Sometimes same noise
values are stored and then subtracted for display or other
purposes, although this is not necessary. The idea of adding
noise intentionally might seem odd. But in the case of
dithering, the noise actually serves a useful purpose. Adding
noise before quantization has the effect of breaking up false
contours by randomly assigning pixels to higher or lower
quantization levels. This works because our eyes have limited
spatial resolution. By having some pixels in a small
neighborhood take on one quantized level and some other
pixels take on a different quantized level, the transition
between the two levels happens more gradually, as a result of
averaging due to limited spatial resolution.
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ORIGINAL IMAGE

DITHERING IMAGE

Halftoning, which refers to techniques used to give a gray
scale rendition in images using only black and white pixels.
The basic idea is that for an oversampled image, a proper
combi-nation of black and white pixels in a neighbourhood
can give the perception of gray scales due to spatial averaging
of the visual system. For example, consider a 4 × 4 block of
pixels. Certain average gray levels for the entire 4 × 4 block
can be achieved even if the 16 pixels comprising the block are
allowed to be only black or white. For example, to get an
intermediate gray level we need only make sure that 8 pixels
are black and 8 are white. Of course, there are a number of
specific patterns of 8 black and 8 white pixels. A Common
technique to avoid the appearance Of patterns is to select the
particular arrangement of black and white pixels for a given
gray scale rendition. It is called a “noise Matrix” or “halftone
matrix” or “dither matrix”.

CLASSICAL HALFTONE IMAGE

CONCLUSION

It would seem logical to emphasize the importance of
Sampling and Quantization in image processing. This was a
big breakthrough in science of processing a gray scale image,
that moved to different levels of pixels per bits further it was
possible to imagine. Now two methods of processing an
image were able to exchange the reconstruction of an signal
and to the nearest neighbouring image identification.In this
paper we implemented Uniform and Non-uniform
Quantization methods of image processing too. We have
shown how Dithering and Halftoning techniques used to
distribute errors among pixels and reduce the effects of
quantization. Finally, we showed the original images and
plotted graphs of image and signal processing ,reconstruction
of images and Quantized images undsergone through results
and also concluded with Dithering and Classical Halftoned
images for the clear understanding of processing an image.
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