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Abstract:  

 MapReduce is emerging as an important 

programming model for large-scale data-parallel 

applications such as web indexing, data mining, and 

scientific simulation. MapReduce runtimes like 

Hadoop tolerates only crash faults, not arbitrary or 

Byzantine faults. Byzantine fault tolerance 

algorithm in MapReduce typically requires 3f+1 

servers to tolerate f Byzantine Servers, which 

involves considerable costs in hardware, software, 

and administration. By achieving arbitrary fault 

tolerance using proposed Byzantine Fault Tolerance 

(BFT) MapReduce algorithms, which improve 

previous algorithms in terms of several metrics. 

First, design a framework requires only 2f + 1 

replicas, instead of the usual 3f + 1. Second, 

improve the performance of framework with help of 

non-speculative and speculative algorithms. An 

important aspect in terms of BFT MapReduce 

algorithm executes the job with acceptable cost for 

many critical applications. 

Keywords: Hadoop, MapReduce, Byzantine 

Faults 

1.INTRODUCTION 

Hadoop is a most popular open-source 

software framework implemented using Java and is 

designed to be used on large distributed systems. 

Hadoop is a project of the Apache Software 

Foundation and is a very popular software tool due, 

in part, to it being open-source. Yahoo! has 

contributed  to about 80% of the main core of 

Hadoop, but many other large technology 

organization have used or are currently using 

Hadoop, such as, Facebook, Twitter, LinkedIn and 

others. The Hadoop framework is comprised of 

many different projects, but two of the main ones 

are the Hadoop Distributed File System (HDFS) 

and MapReduce. 

The Hadoop Distributed File System 

(HDFS) is the file system component of the Hadoop 

framework. HDFS is designed and optimized to 

store data over a large amount of low-cost hardware 

in a distributed fashion. HDFS is comparable to 

Google’s BigTable and designed for a large amount 

of big data files. A typical data file stored using 

HDFS could range from terabytes to zeta bytes in 

size. It support millions of files and can scale to 

hundreds of nodes. HDFS stores file system 

metadata and application data separately. The 

HDFS metadata is stored on dedicated server called 

Name node and application data are stored on other 

node called Data node. The Communication in 

HDFS among all nodes in the system is done by 

using a TCP-based protocol.  

MapReduce is a parallel programming 

model for processing large amounts of metadata on 

cluster computers with unreliable and weak 

communication links
 [3]

. MapReduce is based on the 

scale-out principle, which involves clustering a 

large number of desktop computers. The main point 

of using MapReduce is to move computations to 

data nodes, rather than bring data to computation 

nodes, and thus fully utilize the advantage of data 

locality. The code that divides work, exerts control, 

and merges output in MapReduce is entirely hidden 

from the application user inside the framework. In 

fact, most of the parallel applications can be 

implemented in MapReduce as long as 

synchronized and shared global states are not 

required. MapReduce allows the computation to be 

done in two stages: the map stage and then the 

reduce stage. The data are split sets of key–value 

pairs and their instances are processed in parallel by 

the map stage, with a parallel number that matches 

the node number dedicated as slaves. This process 

generates intermediate key–value pairs that are 

temporary and can later be directed to reduce 

stages. Within map stages or reduce stages, the 

processing is conducted in parallel. The map and 

reduce stages occur in a sequential manner by 

which the reduce stage starts when the map stages 

finishes. 

Fault Tolerance
 [2]

 is the ability of a system 

to continue to function correctly and not lose data 
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even after some components of that system have 

failed. It is complex to achieve fault tolerant 

because there are many physical circumstances that 

just cannot be planned for, but goal of fault 

tolerance it is important to eliminate single point of 

failure, where are elements of the system, that when 

they fail, they can bring down the whole system. 

One of the main goals of Hadoop and HDFS is to be 

highly fault tolerant. When considering that 

thousands of computer components and hundreds of 

networks devices such as switches, routers and 

power units that are involved in these large 

distributed systems, it cause failures to be frequent. 

Hadoop and HDFS center its fault tolerance on data 

redundancy, which is to replicate data so that if one 

replica is lost then there are backup copies. 

A recent era long study of Dynamic Random 

Access Memory (DRAM) errors in a large number 

of servers in Google Datacenter 
[9]

, concluded that 

these errors are more prevalent than previously 

believed, with more than 8% Dual In-Line Memory 

Module (DIMM) affected by yearly, even if 

protected by Error Correcting Code (ECC). The 

Fault tolerance mechanisms of the original 

MapReduce and Hadoop cannot deal with such 

arbitrary or Byzantine faults, even if considering 

only accidental faults, not malicious faults. These 

faults cannot be detected using file checksums, so 

they can silently corrupt the output of any map or 

reduce task, corrupting the result of MapReduce 

job. 

Exploring a new framework to leverages the 

weakness of Hadoop that execute the task in two 

modes such as Speculative and Non-Speculative in 

Job Tracker. Additionally, differ from existing 

approach that use around twice more resources 

instead of three times more of alternative solutions. 

Byzantine fault tolerance framework allows reduced 

number of faulty replica to attain improve its ability 

to mask software errors with acceptable cost. 

 

1.1 HADOOP AND MAPREDUCE 

Hadoop was originally developed to be an 

open implementation of Google MapReduce and 

Google File System. As the ecosystem around 

Hadoop has matured, a variety of tools have been 

developed to streamline data access, data 

management, security, and specialized additions for 

verticals and industries. Despite this large 

ecosystem, there are several primary uses and 

workloads for Hadoop that can be outlined as:  

Storage: One primary component of the Hadoop 

ecosystem is HDFS—the Hadoop Distributed File 

System. The HDFS allows users to have a single 

addressable namespace, spread across many 

hundreds or thousands of servers, creating a single 

large file system. HDFS manages the replication of 

the data on this file system to ensure hardware 

failures do not lead to data loss. Many users will use 

this scalable file system as a place to store large 

amounts of data that is then accessed within jobs 

run in Hadoop or by external systems.  

Compute: A common use of Hadoop is as a 

distributed compute platform for analyzing or 

processing large amounts of data. The compute use 

is characterized by the need for large numbers of 

CPUs and large amounts of memory to store in-

process data. The Hadoop ecosystem provides the 

Application Programming Interfaces (APIs) 

necessary to distribute and track workloads as they 

are run on large numbers of individual machines. 

Database: The Hadoop ecosystem contains 

components that allow the data within the HDFS to 

be presented in a SQL-like interface. This allows 

standard tools to INSERT, SELECT, and UPDATE 

data within the Hadoop environment, with minimal 

code changes to existing applications. Users will 

commonly employ this method for presenting data 

in a SQL format for easy integration with existing 

systems and streamlined access by users.  

 

The MapReduce programming model 

computes a job in two phases programmers specify 

two functions, map and reduce. The input is 

typically large (e.g., gigabytes) and divided in files 

called splits. In the first phase, each split is 

processed by the map function that generates key-

value pairs. Then, these outputs are shuffled 

according to their keys and passed to the reduce 

tasks (each reduce typically gets input from all 

maps) that process the again. This simple idea has 

been shown to be useful for many different 

applications. 

Both the splits and the outputs of the reduce 

tasks are stored in a file system. Due to the typical 

large size of these files, Hadoop has a specific file 

system for this purpose, HDFS, similar to Google’s 

Google File System (GFS). HDFS stores files in 

blocks of 64 MB by default. HDFS contains a name 
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node that manages data storage and many data 

nodes, typically one per server, which store the 

blocks. Blocks are usually replicated in a few data 

nodes for fault tolerance. 

 
 Computation of job in MapReduce 

Users submit a job by providing the map and 

reduce functions, and the location of the splits in the 

HDFS. The processing of a job is controlled by the 

job tracker, which is centralized. The map and 

reduce tasks are executed by task trackers, which 

are executed in servers (e.g., one per core). 

Whenever possible, a map task is executed in the 

server storing the split it must process (locality). 

Task trackers periodically send heartbeat 

messages to the job tracker. The missing of 

heartbeat messages allows the job tracker to figure 

out that a task stalled or failed. Using different 

nodes, the job tracker runs extra, speculative, tasks 

for those lagging behind and restarts the failed ones. 

Nevertheless, this model only supports crashes, not 

arbitrary faults. 

1.2 HDFS ARCHITECTURE 

The Hadoop Distributed File System 

(HDFS) is a distributed file system designed to run 

on commodity hardware. It has many similarities 

with existing distributed file systems. However, the 

differences from other distributed file systems are 

significant. HDFS is highly fault-tolerant and is 

designed to be deployed on low-cost hardware. 

HDFS provides high throughput access to 

application data and is suitable for applications that 

have large data sets. 

1.3 NAME NODE AND DATA NODE 

HDFS has master/slave architecture. An 

HDFS cluster consists of a single NameNode, a 

master server that manages the file system 

namespace and regulates access to files by clients. 

In addition, there are a number of DataNodes, 

usually one per node in the cluster, which manage 

storage attached to the nodes that they run on. 

HDFS exposes a file system namespace and allows 

user data to be stored in files. Internally, a file is 

split into one or more blocks and these blocks are 

stored in a set of DataNodes. The NameNode 

executes file system namespace operations like 

opening, closing, and renaming files and directories. 

It also determines the mapping of blocks to 

DataNodes. The DataNodes are responsible for 

serving read and write requests from the file 

system’s clients. The DataNodes also perform block 

creation, deletion, and replication upon instruction 

from the NameNode.  

The NameNode and DataNode are pieces of 

software designed to run on commodity machines. 

These machines typically run a GNU/Linux 

Operating System (OS). HDFS is built using the 

Java language; any machine that supports Java can 

run the NameNode or the DataNode software. 

Usage of the highly portable Java language means 

that HDFS can be deployed on a wide range of 

machines. A typical deployment has a dedicated 

machine that runs only the NameNode software. 

Each of the other machines in the cluster runs one 

instance of the DataNode software. The architecture 

does not preclude running multiple DataNodes on 

the same machine but in a real deployment that is 

rarely the case. 

1.4 THE FILE SYSTEM NAMESPACE 

HDFS supports a traditional hierarchical file 

organization. A user or an application can create 

directories and store files inside these directories. 

The file system namespace hierarchy is similar to 

most other existing file systems; one can create and 

remove files, move a file from one directory to 

another, or rename a file. HDFS does not yet 

implement user quotas or access permissions. 

HDFS does not support hard links or soft links. 

However, the HDFS architecture does not preclude 

implementing these features. The NameNode 

maintains the file system namespace. Any change to 

the file system namespace or its properties is 

recorded by the NameNode. An application can 

specify the number of replicas of a file that should 

be maintained by HDFS. The number of copies of a 

file is called the replication factor of that file. This 

information is stored by the NameNode. 
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1.5 DATA REPLICATION 

HDFS is designed to reliably store very 

large files across machines in a large cluster. It 

stores each file as a sequence of blocks; all blocks 

in a file except the last block are the same size. The 

blocks of a file are replicated for fault tolerance. 

The block size and replication factor are 

configurable per file. An application can specify the 

number of replicas of a file. The replication factor 

can be specified at file creation time and can be 

changed later. Files in HDFS are write-once and 

have strictly one writer at any time. The NameNode 

makes all decisions regarding replication of blocks. 

It periodically receives a Heartbeat and a 

Blockreport from each of the DataNodes in the 

cluster. Receipt of a Heartbeat implies that the 

DataNode is functioning properly. A Blockreport 

contains a list of all blocks on a DataNode. 

1.6 THE COMMUNICATION PROTOCOLS 

All HDFS communication protocols are 

layered on top of the TCP/IP protocol. A client 

establishes a connection to a configurable TCP port 

on the NameNode machine. It talks the 

ClientProtocol with the NameNode. The DataNodes 

talk to the NameNode using theDataNode Protocol. 

A Remote Procedure Call (RPC) abstraction wraps 

both the ClientProtocol and the DataNode Protocol. 

By design, the NameNode never initiates any 

RPCs.Instead, it only responds to RPC requests 

issued by DataNodes or clients. 

1.7 ROBUSTNESS 

The primary objective of HDFS is to store 

data reliably even in the presence of failures. The 

three common types of failures are NameNode 

failures, DataNode failures and network partitions. 

Each DataNode sends a Heartbeat message to the 

NameNode periodically. A networkpartition can 

cause a subset of DataNodes to lose connectivity 

with the NameNode. The NameNode detects this 

condition by the absence of a Heartbeat message. 

The NameNode marks DataNodes without recent 

Heartbeats as dead and does not forward any new 

IO requests to them. Any data that was registered to 

a dead DataNode is not available to HDFS 

anymore. DataNode death may cause the replication 

factor of some blocks to fall below their specified 

value. The NameNode constantly tracks which 

blocks need to be replicated and initiates replication 

whenever necessary. The necessity for re-

replication may arise due to many reasons: a 

DataNode may become unavailable, a replica may 

become corrupted, a hard disk on a DataNode may 

fail, or the replication factor of a file may be 

increased. 

1.8 DATA ORGANIZATION 

HDFS is designed to support very large 

files. Applications that are compatible with HDFS 

are those that deal with large data sets. These 

applications write their data only once but they read 

it one or more times and require these reads to be 

satisfied at streaming speeds. HDFS supports write-

once-read-many semantics on files. A typical block 

size used by HDFS is 64 MB. Thus, an HDFS file is 

chopped up into 64 MB chunks, and if possible, 

each chunk will reside on a different DataNode.A 

client request to create a file does not reach the 

NameNode immediately. In fact, initiallythe HDFS 

client caches the file data into a temporary local 

file. Application writes are transparently redirected 

to this temporary local file. When the local file 

accumulates data worth over one HDFS block size, 

the client contacts the NameNode. The NameNode 

inserts the file name into the file system hierarchy 

and allocates a data block for it. 

 The NameNode responds to the client 

request with the identity of the DataNode and the 

destination data block. Then the client flushes the 

block of data from the local temporary file to the 

specified DataNode. When a file is closed, the 

remaining un-flushed data in the temporary local 

file is transferred to the DataNode. The client then 

tells the NameNode that the file is closed. At this 

point, the NameNode commits the file creation 

operation into a persistent store. However, this 

degradation is acceptable because even though 

HDFS applications are very data intensive in nature, 

they are not metadata intensive. When a NameNode 

restarts, it selects the latest consistent FsImage and 

EditLog to use. The NameNode machine is a single 

point of failure for an HDFS cluster. If the 

NameNode machine fails, manual intervention is 

necessary. Currently, automatic restart and failover 

of the NameNode software to another machine is 

not supported. 

1.9 FILE DELETES AND UNDELETES 

When a file is deleted by a user or an 

application, it is not immediately removed from 
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HDFS. Instead, HDFS first renames it to a file in 

the /trash directory. The file can be restored quickly 

as long as it remains in /trash. A file remains in 

/trash for a configurable amount of time. After the 

expiry of its life in /trash, the NameNode deletes the 

file from the HDFS namespace. The deletion of a 

file causes the blocks associated with the file to be 

freed. Note that there could be an appreciable time 

delay between the time a file is deleted by a user 

and the time of the corresponding increase in free 

space in HDFS. 

2. SYSTEM ANALYSIS 

2.1 PROBLEM DESCRIPTION 

The Byzantine Fault Tolerance (BFT) MapReduce 

runtime system by Costa was proposed to tolerate 

system faults that corrupt the results of computation 

of tasks (e.g. DRAM and CPU errors or faults). A 

replication approach is applied over a Hadoop 

implementation, and the authors proposed several 

methods to reduce the number of replicas needed: i) 

deferred execution, which allows reducing the 

number of replicas from 3f +1 to f+1, where f is the 

number of errors to tolerate; ii) tentative reduce 

execution, which starts executing the reduce tasks 

when the first replicas complete their execution; iii) 

digest outputs, which fetches the (usually large) 

outputs from replicas and compare them to hashes, 

thus reducing the network traffic; and iv) tight 

storage replication that implies writing only one 

replica for the outputs of both map and reduce 

tasks. A prototype of BFT was implemented by 

modifying the Hadoop version 0.20.0 source code, 

including changes into the JobTracker class to 

implement the replica management using queues, 

and the Job in progress class to store information 

(into a Voting System object) about each running 

replica. The Heartbeat class was slightly modified 

to include the digest and task replica identifiers. The 

experimental evaluation compared the BFT system 

and the traditional Hadoop implementation, for the 

case of f=1 errors. Executions of MapReduce using 

BFT are about 15% larger than using Hadoop, but 

they provide support for single execution errors at a 

cost of roughly twice the consumption of resources. 

Similar to other fault tolerance mechanisms using 

replication, the proposed BFT system is more 

economical than using the original MapReduce 

runtime implemented on Hadoop. 

2.2 EXISTING SYSTEM 

Byzantine fault existence can be extremely 

difficult to design a highly reliable system. The only 

practical solution is to build fault tolerant 

framework. To achieve fault tolerance system must 

have one or more mechanism specifically designed 

for dealing with component failures (network 

switches, routers and power units), hard drive and 

machine failures. 

Two of the notable existing system 

describes in following approaches, 

 Creditability based fault tolerance  

 State machine replication 

2.2.1 CREDITABILITY BASED FAULT 

TOLERANCE 

Creditability Based Fault Tolerant (CBFT) 
[4] 

working behind a traditional majority voting 

technique integrates with new idea of Spot-

checking, Backtracking, and Backlisting 

mechanism. With the help of the mechanism is to 

estimate the creditability of results and workers as 

the probability of their being correct the given 

results. Estimated the given results to determine 

whether a piece of work needs to be repeatable or is 

creditable enough to be accepted, not only able to 

attain mathematically guranteeable level of 

correctness, but are also able to do so much smaller 

down than possible with traditional techniques. 

Finally, validate these new ideas with Monte-Carlo 

Simulation. 

CBFT to attain their efficiency and reliable 

framework for MapReduce by using following 

techniques, 

a. Majority Voting 

b. Spot Checking 

c. Spot Listing 

A. Majority Voting  

Each piece of work several times and decide 

which resultto accept through a vote. Majority 

voting can easily implement this scheme by using a 

modified eager scheduling work pool.The master 

continuouslygoes through the work entries in the 

work pool in round-robin fashion, until the done 

flags of all work entries are set. In this case, 

however, the done flag of each work entry is left 

unset until collect m matching results for that work 

entry, thus implementing an m-first voting scheme. 
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B. Spot Checking 

In spot-checking, the master node does not 

redo all the work objects two or more times, but 

instead randomly gives a worker a spotter work 

object whose correct result is already known or will 

be known by checking it in some manner 

afterwards. Then, if a worker is caught giving a bad 

result, the master back-tracks through all the results 

received from that worker so far and invalidates all 

of them. The master may also blacklist the caught 

saboteur so that it is prevented from submitting any 

more bad results in the future. Because spot-

checking does not involve replicating all the work 

objects, it has a much lower redundancy than 

voting. 

C. Spot Listing 

In Spot Listing, saboteurs are blacklisted 

and never allowed to return or do any more work. 

Unfortunately, it may not always be possible to 

enforce blacklisting. Although, blacklist the 

saboteurs based on email address, it is not too hard 

for a saboteur to create a new email address and 

volunteer as a new person. Blacklisting by IP 

address would not work either because many people 

use ISPs that give them a dynamic address that 

changes every time they dial up. Requiring more 

verifiable forms of identification such as home 

address and a telephone number can turn away 

saboteurs, but would probably turn away many 

well-meaning volunteers as well.In this case,errors 

can only come from saboteurs that survive until the 

end of the batch. 

2.2.2 STATE MACHINE REPLICATION 

The state machine approach is a general 

method for implementing a fault-tolerant service by 

replicating servers and coordinating client 

interactions with server replicas 
[1]

. A state machine 

consists of state variables, which encode its state, 

and commands, which transform its state. Each 

command is implemented by a deterministic 

program; execution of the command is atomic with 

respect to other commands and modifies the state 

variables and/or produces some output. State 

machine can be implemented by replicating that 

state machine and running a replica on each of the 

processors in a distributed system. Provided each 

replica being run by a non-faulty processor starts in 

the same initial state executes the same request in 

the same order, then each will do the same thing 

and produce the same output. 

When processors can experience Byzantine 

failures, an ensemble implementing a fault tolerant 

state machine must have at least 2f+1 replica, and 

the output of the ensemble is the output produced 

by the majority of the replicas.  

To implementing fault-tolerant state 

machine is to ensure that following: 

Replica Coordination: All replicas receive and 

process the same sequence of requests. 

Agreement: Every non-faulty state machine replica 

receives every request. 

Order: Every non-faulty state machine replica 

processes the request it receives in the same relative 

order 

2.2.3  LIMITATIONS OF EXISTING SYSTEM 

All computation is performed in an 

untrusted environment, and at any time, one can 

expect some volunteers to sabotage.There is no 

guarantee that a scheduled task will produce a result 

in an acceptable time frame. 

If only fail-stop failures are possible, t+1 

replicas are sufficient for a t fault tolerant system, 

but byzantine failure requires 3t+1 replica. 

State machine approach is not directly 

applicable to the replication of MapReduce tasks, 

only to replicate the jobs, which is expensive. 

Replicates everything includes task 

execution, map tasks input readings, 

communication of map tasks output and storage of 

map reduce outputs in 2f+1 manner. 

Transferring the same data several times 

causing additional network traffic.  

2.3 PROPOSED SYSTEM 

 

2.3.1 OVERVIEW OF THE PROJECT 

The objective of designing a new system is 

to improve the performance of MapReduce 

programming model with considerable cost over the 

conventional mechanisms. A traditional State 

machine replication mechanism replicates 

everything 3f+1 time includes task execution, map 

task outputs, and storage of reduce task outputs. To 

optimize an execution cost, Byzantine Fault 

Tolerant (BFT) MapReduce algorithm execute each 

job twice more resources instead of three times 

more of alternative solutions. An algorithm can run 

in two modes for handling byzantine failures in 

large cluster, speculative and non-speculative mode. 
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In speculative mode, reduce tasks start after one 

replica of all map finish and the non-speculative 

mode, f+1 replica of all map tasks have to complete 

successfully. 

BFT MapReduce Algorithm 

A simplistic solution to make MapReduce 

Byzantine fault-tolerant considering the maximum 

faulty replica that can return the same output given 

the same input instead of maximum number of 

replica used in conventional algorithm. It works 

behind the steps to be followed as, 

The JobTracker starts 2f+1 replicas of each 

map task in different nodes and TaskTrackers. 

The JobTracker starts also 2f+1 replicas of 

each reduce task. Each reduce task fetches the 

output from all map replicas, picks the most voted 

results, processes them and stores the output in 

HDFS. At the end, either the client or a special task 

must vote the outputs to pick the correct result.  

A simpler but powerful idea of fault tolerant 

algorithm to avoid the execution cost by a set of 

following techniques, 

 

A.  Deferred execution 

Crash faults, which happen more often, are 

detected using Hadoop standard heartbeats, while 

arbitrary faults are dealt using replication and 

voting. Given the expected low probability of 

arbitrary faults, there is no point in always 

executing 2f + 1 replicas to obtain the same result 

almost every time. Therefore, our job trackers start 

only f +1 replicas of map and reduce tasks. After 

map tasks finish, the reduce tasks check if all f + 1 

replicas of every map tasks produced the same 

output. If some outputs do not match, more replicas 

are started until there are f + 1 matching replies. At 

the end of execution, the reduce output is also 

checked to see if it is necessary to launch more 

reduce replicas. 

B. Digest outputs 

In Digest output, using f+1 map outputs 

and f+1 reduce outputs must be matched to be 

considered correct. These outputs tend to be large, 

so it is useful to fetch only one output from some 

task replica and compare its digest with those of 

the remaining replicas. With this solution, to avoid 

transferring the same data several times causing 

additional network traffic, and just transfer data 

from one replica and the digests from the rest. 

C. Tight storage replication 

To write the output of all reduce tasks to 

HDFS with a replication factor of 1, instead of 3 

(the default value). These are already replicating 

the tasks, and their outputs will be written on 

different locations, so no need to replicate these 

outputs even more. A job starts reading replicated 

data from HDFS, but from this point forward, the 

data that is saved in the HDFS by each (replicated) 

task is no longer replicated. 

3. CONCLUSION AND FUTURE WORK 

3.1 CONCLUSION 

The fault tolerance mechanisms of the 

original MapReduce cannot deal with Byzantine 

faults. These faults in general cannot be detected, so 

they can silently corrupt the output of any map or 

reduce task. A novel algorithm, Byzantine Fault 

Tolerant (BFT) MapReduce masks these faults by 

executing each task more than once, comparing the 

outputs of these executions, and disregarding non-

matching outputs.  

BFT MapReduce focuses three major 

problems in Hadoop environment. First, restricting 

the programming model makes it easy to parallelize 

and distribute computations and to make such 

computations fault-tolerant. Second, a number of 

optimizations in proposed system are therefore 

targeted at reducing the amount of data sent across 

the network: the locality optimization allows us to 

read data from local disks, and writing a single copy 

of the intermediate data to local disk saves cost. 

Third, redundant execution can be used to reduce 

the impact of slow machines, and to handle 

arbitrary failures and data loss. 

This simple but powerful idea allows BFT 

MapReduce to tolerate any number of faulty task 

executions at the cost of one re-execution per faulty 

task.. 

 

3.2 FUTURE WORK 

Apache Pig is a platform for analyzing large 

data sets that consists of high-level language for 

expressing data analysis programs coupled with 

extensibility. But it has lack of security and 
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performance degradation due to failover. 

Furthermore, decided to BFT MapReduce algorithm 

applied in Apache Pig Platform to overcome those 

difficulties. 
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