
International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 171

Improvement in the Performance of Byzantine Fault Tolerant in Hadoop
1
K.Ganesan and

2
K. Krishneswari,

1
M.E(Computer Science & Engineering),

2
Professor and Head, Dept Of Computer Science & Engineering,

1,2
Tamilnadu College of Engineering, Coimbatore, India.

Abstract:

 MapReduce is emerging as an important

programming model for large-scale data-parallel

applications such as web indexing, data mining, and

scientific simulation. MapReduce runtimes like

Hadoop tolerates only crash faults, not arbitrary or

Byzantine faults. Byzantine fault tolerance

algorithm in MapReduce typically requires 3f+1

servers to tolerate f Byzantine Servers, which

involves considerable costs in hardware, software,

and administration. By achieving arbitrary fault

tolerance using proposed Byzantine Fault Tolerance

(BFT) MapReduce algorithms, which improve

previous algorithms in terms of several metrics.

First, design a framework requires only 2f + 1

replicas, instead of the usual 3f + 1. Second,

improve the performance of framework with help of

non-speculative and speculative algorithms. An

important aspect in terms of BFT MapReduce

algorithm executes the job with acceptable cost for

many critical applications.

Keywords: Hadoop, MapReduce, Byzantine

Faults

1.INTRODUCTION

Hadoop is a most popular open-source

software framework implemented using Java and is

designed to be used on large distributed systems.

Hadoop is a project of the Apache Software

Foundation and is a very popular software tool due,

in part, to it being open-source. Yahoo! has

contributed to about 80% of the main core of

Hadoop, but many other large technology

organization have used or are currently using

Hadoop, such as, Facebook, Twitter, LinkedIn and

others. The Hadoop framework is comprised of

many different projects, but two of the main ones

are the Hadoop Distributed File System (HDFS)

and MapReduce.

The Hadoop Distributed File System

(HDFS) is the file system component of the Hadoop

framework. HDFS is designed and optimized to

store data over a large amount of low-cost hardware

in a distributed fashion. HDFS is comparable to

Google’s BigTable and designed for a large amount

of big data files. A typical data file stored using

HDFS could range from terabytes to zeta bytes in

size. It support millions of files and can scale to

hundreds of nodes. HDFS stores file system

metadata and application data separately. The

HDFS metadata is stored on dedicated server called

Name node and application data are stored on other

node called Data node. The Communication in

HDFS among all nodes in the system is done by

using a TCP-based protocol.

MapReduce is a parallel programming

model for processing large amounts of metadata on

cluster computers with unreliable and weak

communication links
 [3]

. MapReduce is based on the

scale-out principle, which involves clustering a

large number of desktop computers. The main point

of using MapReduce is to move computations to

data nodes, rather than bring data to computation

nodes, and thus fully utilize the advantage of data

locality. The code that divides work, exerts control,

and merges output in MapReduce is entirely hidden

from the application user inside the framework. In

fact, most of the parallel applications can be

implemented in MapReduce as long as

synchronized and shared global states are not

required. MapReduce allows the computation to be

done in two stages: the map stage and then the

reduce stage. The data are split sets of key–value

pairs and their instances are processed in parallel by

the map stage, with a parallel number that matches

the node number dedicated as slaves. This process

generates intermediate key–value pairs that are

temporary and can later be directed to reduce

stages. Within map stages or reduce stages, the

processing is conducted in parallel. The map and

reduce stages occur in a sequential manner by

which the reduce stage starts when the map stages

finishes.

Fault Tolerance
 [2]

 is the ability of a system

to continue to function correctly and not lose data

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 172

even after some components of that system have

failed. It is complex to achieve fault tolerant

because there are many physical circumstances that

just cannot be planned for, but goal of fault

tolerance it is important to eliminate single point of

failure, where are elements of the system, that when

they fail, they can bring down the whole system.

One of the main goals of Hadoop and HDFS is to be

highly fault tolerant. When considering that

thousands of computer components and hundreds of

networks devices such as switches, routers and

power units that are involved in these large

distributed systems, it cause failures to be frequent.

Hadoop and HDFS center its fault tolerance on data

redundancy, which is to replicate data so that if one

replica is lost then there are backup copies.

A recent era long study of Dynamic Random

Access Memory (DRAM) errors in a large number

of servers in Google Datacenter
[9]

, concluded that

these errors are more prevalent than previously

believed, with more than 8% Dual In-Line Memory

Module (DIMM) affected by yearly, even if

protected by Error Correcting Code (ECC). The

Fault tolerance mechanisms of the original

MapReduce and Hadoop cannot deal with such

arbitrary or Byzantine faults, even if considering

only accidental faults, not malicious faults. These

faults cannot be detected using file checksums, so

they can silently corrupt the output of any map or

reduce task, corrupting the result of MapReduce

job.

Exploring a new framework to leverages the

weakness of Hadoop that execute the task in two

modes such as Speculative and Non-Speculative in

Job Tracker. Additionally, differ from existing

approach that use around twice more resources

instead of three times more of alternative solutions.

Byzantine fault tolerance framework allows reduced

number of faulty replica to attain improve its ability

to mask software errors with acceptable cost.

1.1 HADOOP AND MAPREDUCE

Hadoop was originally developed to be an

open implementation of Google MapReduce and

Google File System. As the ecosystem around

Hadoop has matured, a variety of tools have been

developed to streamline data access, data

management, security, and specialized additions for

verticals and industries. Despite this large

ecosystem, there are several primary uses and

workloads for Hadoop that can be outlined as:

Storage: One primary component of the Hadoop

ecosystem is HDFS—the Hadoop Distributed File

System. The HDFS allows users to have a single

addressable namespace, spread across many

hundreds or thousands of servers, creating a single

large file system. HDFS manages the replication of

the data on this file system to ensure hardware

failures do not lead to data loss. Many users will use

this scalable file system as a place to store large

amounts of data that is then accessed within jobs

run in Hadoop or by external systems.

Compute: A common use of Hadoop is as a

distributed compute platform for analyzing or

processing large amounts of data. The compute use

is characterized by the need for large numbers of

CPUs and large amounts of memory to store in-

process data. The Hadoop ecosystem provides the

Application Programming Interfaces (APIs)

necessary to distribute and track workloads as they

are run on large numbers of individual machines.

Database: The Hadoop ecosystem contains

components that allow the data within the HDFS to

be presented in a SQL-like interface. This allows

standard tools to INSERT, SELECT, and UPDATE

data within the Hadoop environment, with minimal

code changes to existing applications. Users will

commonly employ this method for presenting data

in a SQL format for easy integration with existing

systems and streamlined access by users.

The MapReduce programming model

computes a job in two phases programmers specify

two functions, map and reduce. The input is

typically large (e.g., gigabytes) and divided in files

called splits. In the first phase, each split is

processed by the map function that generates key-

value pairs. Then, these outputs are shuffled

according to their keys and passed to the reduce

tasks (each reduce typically gets input from all

maps) that process the again. This simple idea has

been shown to be useful for many different

applications.

Both the splits and the outputs of the reduce

tasks are stored in a file system. Due to the typical

large size of these files, Hadoop has a specific file

system for this purpose, HDFS, similar to Google’s

Google File System (GFS). HDFS stores files in

blocks of 64 MB by default. HDFS contains a name

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 173

node that manages data storage and many data

nodes, typically one per server, which store the

blocks. Blocks are usually replicated in a few data

nodes for fault tolerance.

 Computation of job in MapReduce

Users submit a job by providing the map and

reduce functions, and the location of the splits in the

HDFS. The processing of a job is controlled by the

job tracker, which is centralized. The map and

reduce tasks are executed by task trackers, which

are executed in servers (e.g., one per core).

Whenever possible, a map task is executed in the

server storing the split it must process (locality).

Task trackers periodically send heartbeat

messages to the job tracker. The missing of

heartbeat messages allows the job tracker to figure

out that a task stalled or failed. Using different

nodes, the job tracker runs extra, speculative, tasks

for those lagging behind and restarts the failed ones.

Nevertheless, this model only supports crashes, not

arbitrary faults.

1.2 HDFS ARCHITECTURE

The Hadoop Distributed File System

(HDFS) is a distributed file system designed to run

on commodity hardware. It has many similarities

with existing distributed file systems. However, the

differences from other distributed file systems are

significant. HDFS is highly fault-tolerant and is

designed to be deployed on low-cost hardware.

HDFS provides high throughput access to

application data and is suitable for applications that

have large data sets.

1.3 NAME NODE AND DATA NODE

HDFS has master/slave architecture. An

HDFS cluster consists of a single NameNode, a

master server that manages the file system

namespace and regulates access to files by clients.

In addition, there are a number of DataNodes,

usually one per node in the cluster, which manage

storage attached to the nodes that they run on.

HDFS exposes a file system namespace and allows

user data to be stored in files. Internally, a file is

split into one or more blocks and these blocks are

stored in a set of DataNodes. The NameNode

executes file system namespace operations like

opening, closing, and renaming files and directories.

It also determines the mapping of blocks to

DataNodes. The DataNodes are responsible for

serving read and write requests from the file

system’s clients. The DataNodes also perform block

creation, deletion, and replication upon instruction

from the NameNode.

The NameNode and DataNode are pieces of

software designed to run on commodity machines.

These machines typically run a GNU/Linux

Operating System (OS). HDFS is built using the

Java language; any machine that supports Java can

run the NameNode or the DataNode software.

Usage of the highly portable Java language means

that HDFS can be deployed on a wide range of

machines. A typical deployment has a dedicated

machine that runs only the NameNode software.

Each of the other machines in the cluster runs one

instance of the DataNode software. The architecture

does not preclude running multiple DataNodes on

the same machine but in a real deployment that is

rarely the case.

1.4 THE FILE SYSTEM NAMESPACE

HDFS supports a traditional hierarchical file

organization. A user or an application can create

directories and store files inside these directories.

The file system namespace hierarchy is similar to

most other existing file systems; one can create and

remove files, move a file from one directory to

another, or rename a file. HDFS does not yet

implement user quotas or access permissions.

HDFS does not support hard links or soft links.

However, the HDFS architecture does not preclude

implementing these features. The NameNode

maintains the file system namespace. Any change to

the file system namespace or its properties is

recorded by the NameNode. An application can

specify the number of replicas of a file that should

be maintained by HDFS. The number of copies of a

file is called the replication factor of that file. This

information is stored by the NameNode.

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 174

1.5 DATA REPLICATION

HDFS is designed to reliably store very

large files across machines in a large cluster. It

stores each file as a sequence of blocks; all blocks

in a file except the last block are the same size. The

blocks of a file are replicated for fault tolerance.

The block size and replication factor are

configurable per file. An application can specify the

number of replicas of a file. The replication factor

can be specified at file creation time and can be

changed later. Files in HDFS are write-once and

have strictly one writer at any time. The NameNode

makes all decisions regarding replication of blocks.

It periodically receives a Heartbeat and a

Blockreport from each of the DataNodes in the

cluster. Receipt of a Heartbeat implies that the

DataNode is functioning properly. A Blockreport

contains a list of all blocks on a DataNode.

1.6 THE COMMUNICATION PROTOCOLS

All HDFS communication protocols are

layered on top of the TCP/IP protocol. A client

establishes a connection to a configurable TCP port

on the NameNode machine. It talks the

ClientProtocol with the NameNode. The DataNodes

talk to the NameNode using theDataNode Protocol.

A Remote Procedure Call (RPC) abstraction wraps

both the ClientProtocol and the DataNode Protocol.

By design, the NameNode never initiates any

RPCs.Instead, it only responds to RPC requests

issued by DataNodes or clients.

1.7 ROBUSTNESS

The primary objective of HDFS is to store

data reliably even in the presence of failures. The

three common types of failures are NameNode

failures, DataNode failures and network partitions.

Each DataNode sends a Heartbeat message to the

NameNode periodically. A networkpartition can

cause a subset of DataNodes to lose connectivity

with the NameNode. The NameNode detects this

condition by the absence of a Heartbeat message.

The NameNode marks DataNodes without recent

Heartbeats as dead and does not forward any new

IO requests to them. Any data that was registered to

a dead DataNode is not available to HDFS

anymore. DataNode death may cause the replication

factor of some blocks to fall below their specified

value. The NameNode constantly tracks which

blocks need to be replicated and initiates replication

whenever necessary. The necessity for re-

replication may arise due to many reasons: a

DataNode may become unavailable, a replica may

become corrupted, a hard disk on a DataNode may

fail, or the replication factor of a file may be

increased.

1.8 DATA ORGANIZATION

HDFS is designed to support very large

files. Applications that are compatible with HDFS

are those that deal with large data sets. These

applications write their data only once but they read

it one or more times and require these reads to be

satisfied at streaming speeds. HDFS supports write-

once-read-many semantics on files. A typical block

size used by HDFS is 64 MB. Thus, an HDFS file is

chopped up into 64 MB chunks, and if possible,

each chunk will reside on a different DataNode.A

client request to create a file does not reach the

NameNode immediately. In fact, initiallythe HDFS

client caches the file data into a temporary local

file. Application writes are transparently redirected

to this temporary local file. When the local file

accumulates data worth over one HDFS block size,

the client contacts the NameNode. The NameNode

inserts the file name into the file system hierarchy

and allocates a data block for it.

 The NameNode responds to the client

request with the identity of the DataNode and the

destination data block. Then the client flushes the

block of data from the local temporary file to the

specified DataNode. When a file is closed, the

remaining un-flushed data in the temporary local

file is transferred to the DataNode. The client then

tells the NameNode that the file is closed. At this

point, the NameNode commits the file creation

operation into a persistent store. However, this

degradation is acceptable because even though

HDFS applications are very data intensive in nature,

they are not metadata intensive. When a NameNode

restarts, it selects the latest consistent FsImage and

EditLog to use. The NameNode machine is a single

point of failure for an HDFS cluster. If the

NameNode machine fails, manual intervention is

necessary. Currently, automatic restart and failover

of the NameNode software to another machine is

not supported.

1.9 FILE DELETES AND UNDELETES

When a file is deleted by a user or an

application, it is not immediately removed from

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 175

HDFS. Instead, HDFS first renames it to a file in

the /trash directory. The file can be restored quickly

as long as it remains in /trash. A file remains in

/trash for a configurable amount of time. After the

expiry of its life in /trash, the NameNode deletes the

file from the HDFS namespace. The deletion of a

file causes the blocks associated with the file to be

freed. Note that there could be an appreciable time

delay between the time a file is deleted by a user

and the time of the corresponding increase in free

space in HDFS.

2. SYSTEM ANALYSIS

2.1 PROBLEM DESCRIPTION

The Byzantine Fault Tolerance (BFT) MapReduce

runtime system by Costa was proposed to tolerate

system faults that corrupt the results of computation

of tasks (e.g. DRAM and CPU errors or faults). A

replication approach is applied over a Hadoop

implementation, and the authors proposed several

methods to reduce the number of replicas needed: i)

deferred execution, which allows reducing the

number of replicas from 3f +1 to f+1, where f is the

number of errors to tolerate; ii) tentative reduce

execution, which starts executing the reduce tasks

when the first replicas complete their execution; iii)

digest outputs, which fetches the (usually large)

outputs from replicas and compare them to hashes,

thus reducing the network traffic; and iv) tight

storage replication that implies writing only one

replica for the outputs of both map and reduce

tasks. A prototype of BFT was implemented by

modifying the Hadoop version 0.20.0 source code,

including changes into the JobTracker class to

implement the replica management using queues,

and the Job in progress class to store information

(into a Voting System object) about each running

replica. The Heartbeat class was slightly modified

to include the digest and task replica identifiers. The

experimental evaluation compared the BFT system

and the traditional Hadoop implementation, for the

case of f=1 errors. Executions of MapReduce using

BFT are about 15% larger than using Hadoop, but

they provide support for single execution errors at a

cost of roughly twice the consumption of resources.

Similar to other fault tolerance mechanisms using

replication, the proposed BFT system is more

economical than using the original MapReduce

runtime implemented on Hadoop.

2.2 EXISTING SYSTEM

Byzantine fault existence can be extremely

difficult to design a highly reliable system. The only

practical solution is to build fault tolerant

framework. To achieve fault tolerance system must

have one or more mechanism specifically designed

for dealing with component failures (network

switches, routers and power units), hard drive and

machine failures.

Two of the notable existing system

describes in following approaches,

 Creditability based fault tolerance

 State machine replication

2.2.1 CREDITABILITY BASED FAULT

TOLERANCE

Creditability Based Fault Tolerant (CBFT)
[4]

working behind a traditional majority voting

technique integrates with new idea of Spot-

checking, Backtracking, and Backlisting

mechanism. With the help of the mechanism is to

estimate the creditability of results and workers as

the probability of their being correct the given

results. Estimated the given results to determine

whether a piece of work needs to be repeatable or is

creditable enough to be accepted, not only able to

attain mathematically guranteeable level of

correctness, but are also able to do so much smaller

down than possible with traditional techniques.

Finally, validate these new ideas with Monte-Carlo

Simulation.

CBFT to attain their efficiency and reliable

framework for MapReduce by using following

techniques,

a. Majority Voting

b. Spot Checking

c. Spot Listing

A. Majority Voting

Each piece of work several times and decide

which resultto accept through a vote. Majority

voting can easily implement this scheme by using a

modified eager scheduling work pool.The master

continuouslygoes through the work entries in the

work pool in round-robin fashion, until the done

flags of all work entries are set. In this case,

however, the done flag of each work entry is left

unset until collect m matching results for that work

entry, thus implementing an m-first voting scheme.

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 176

B. Spot Checking

In spot-checking, the master node does not

redo all the work objects two or more times, but

instead randomly gives a worker a spotter work

object whose correct result is already known or will

be known by checking it in some manner

afterwards. Then, if a worker is caught giving a bad

result, the master back-tracks through all the results

received from that worker so far and invalidates all

of them. The master may also blacklist the caught

saboteur so that it is prevented from submitting any

more bad results in the future. Because spot-

checking does not involve replicating all the work

objects, it has a much lower redundancy than

voting.

C. Spot Listing

In Spot Listing, saboteurs are blacklisted

and never allowed to return or do any more work.

Unfortunately, it may not always be possible to

enforce blacklisting. Although, blacklist the

saboteurs based on email address, it is not too hard

for a saboteur to create a new email address and

volunteer as a new person. Blacklisting by IP

address would not work either because many people

use ISPs that give them a dynamic address that

changes every time they dial up. Requiring more

verifiable forms of identification such as home

address and a telephone number can turn away

saboteurs, but would probably turn away many

well-meaning volunteers as well.In this case,errors

can only come from saboteurs that survive until the

end of the batch.

2.2.2 STATE MACHINE REPLICATION

The state machine approach is a general

method for implementing a fault-tolerant service by

replicating servers and coordinating client

interactions with server replicas
[1]

. A state machine

consists of state variables, which encode its state,

and commands, which transform its state. Each

command is implemented by a deterministic

program; execution of the command is atomic with

respect to other commands and modifies the state

variables and/or produces some output. State

machine can be implemented by replicating that

state machine and running a replica on each of the

processors in a distributed system. Provided each

replica being run by a non-faulty processor starts in

the same initial state executes the same request in

the same order, then each will do the same thing

and produce the same output.

When processors can experience Byzantine

failures, an ensemble implementing a fault tolerant

state machine must have at least 2f+1 replica, and

the output of the ensemble is the output produced

by the majority of the replicas.

To implementing fault-tolerant state

machine is to ensure that following:

Replica Coordination: All replicas receive and

process the same sequence of requests.

Agreement: Every non-faulty state machine replica

receives every request.

Order: Every non-faulty state machine replica

processes the request it receives in the same relative

order

2.2.3 LIMITATIONS OF EXISTING SYSTEM

All computation is performed in an

untrusted environment, and at any time, one can

expect some volunteers to sabotage.There is no

guarantee that a scheduled task will produce a result

in an acceptable time frame.

If only fail-stop failures are possible, t+1

replicas are sufficient for a t fault tolerant system,

but byzantine failure requires 3t+1 replica.

State machine approach is not directly

applicable to the replication of MapReduce tasks,

only to replicate the jobs, which is expensive.

Replicates everything includes task

execution, map tasks input readings,

communication of map tasks output and storage of

map reduce outputs in 2f+1 manner.

Transferring the same data several times

causing additional network traffic.

2.3 PROPOSED SYSTEM

2.3.1 OVERVIEW OF THE PROJECT

The objective of designing a new system is

to improve the performance of MapReduce

programming model with considerable cost over the

conventional mechanisms. A traditional State

machine replication mechanism replicates

everything 3f+1 time includes task execution, map

task outputs, and storage of reduce task outputs. To

optimize an execution cost, Byzantine Fault

Tolerant (BFT) MapReduce algorithm execute each

job twice more resources instead of three times

more of alternative solutions. An algorithm can run

in two modes for handling byzantine failures in

large cluster, speculative and non-speculative mode.

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 177

In speculative mode, reduce tasks start after one

replica of all map finish and the non-speculative

mode, f+1 replica of all map tasks have to complete

successfully.

BFT MapReduce Algorithm

A simplistic solution to make MapReduce

Byzantine fault-tolerant considering the maximum

faulty replica that can return the same output given

the same input instead of maximum number of

replica used in conventional algorithm. It works

behind the steps to be followed as,

The JobTracker starts 2f+1 replicas of each

map task in different nodes and TaskTrackers.

The JobTracker starts also 2f+1 replicas of

each reduce task. Each reduce task fetches the

output from all map replicas, picks the most voted

results, processes them and stores the output in

HDFS. At the end, either the client or a special task

must vote the outputs to pick the correct result.

A simpler but powerful idea of fault tolerant

algorithm to avoid the execution cost by a set of

following techniques,

A. Deferred execution

Crash faults, which happen more often, are

detected using Hadoop standard heartbeats, while

arbitrary faults are dealt using replication and

voting. Given the expected low probability of

arbitrary faults, there is no point in always

executing 2f + 1 replicas to obtain the same result

almost every time. Therefore, our job trackers start

only f +1 replicas of map and reduce tasks. After

map tasks finish, the reduce tasks check if all f + 1

replicas of every map tasks produced the same

output. If some outputs do not match, more replicas

are started until there are f + 1 matching replies. At

the end of execution, the reduce output is also

checked to see if it is necessary to launch more

reduce replicas.

B. Digest outputs

In Digest output, using f+1 map outputs

and f+1 reduce outputs must be matched to be

considered correct. These outputs tend to be large,

so it is useful to fetch only one output from some

task replica and compare its digest with those of

the remaining replicas. With this solution, to avoid

transferring the same data several times causing

additional network traffic, and just transfer data

from one replica and the digests from the rest.

C. Tight storage replication

To write the output of all reduce tasks to

HDFS with a replication factor of 1, instead of 3

(the default value). These are already replicating

the tasks, and their outputs will be written on

different locations, so no need to replicate these

outputs even more. A job starts reading replicated

data from HDFS, but from this point forward, the

data that is saved in the HDFS by each (replicated)

task is no longer replicated.

3. CONCLUSION AND FUTURE WORK

3.1 CONCLUSION

The fault tolerance mechanisms of the

original MapReduce cannot deal with Byzantine

faults. These faults in general cannot be detected, so

they can silently corrupt the output of any map or

reduce task. A novel algorithm, Byzantine Fault

Tolerant (BFT) MapReduce masks these faults by

executing each task more than once, comparing the

outputs of these executions, and disregarding non-

matching outputs.

BFT MapReduce focuses three major

problems in Hadoop environment. First, restricting

the programming model makes it easy to parallelize

and distribute computations and to make such

computations fault-tolerant. Second, a number of

optimizations in proposed system are therefore

targeted at reducing the amount of data sent across

the network: the locality optimization allows us to

read data from local disks, and writing a single copy

of the intermediate data to local disk saves cost.

Third, redundant execution can be used to reduce

the impact of slow machines, and to handle

arbitrary failures and data loss.

This simple but powerful idea allows BFT

MapReduce to tolerate any number of faulty task

executions at the cost of one re-execution per faulty

task..

3.2 FUTURE WORK

Apache Pig is a platform for analyzing large

data sets that consists of high-level language for

expressing data analysis programs coupled with

extensibility. But it has lack of security and

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 178

performance degradation due to failover.

Furthermore, decided to BFT MapReduce algorithm

applied in Apache Pig Platform to overcome those

difficulties.

REFERENCES

[1] Pedro Costa, Marcelo Pasin, Alysson

Bessani, Miguel Correia, ―On the

Performance of Byzantine Fault-Tolerant

MapReduce‖, IEEE Transactions on

Dependable and Secure Computing, vol.22,

no. 9, Mar. 2013

[2] P. Costa, M. Pasin, A. Bessani, and M.

Correia, ―Byzantine fault tolerant

MapReduce: Faults are not just crashes‖, in

Proceedings of the 3rd IEEE International

Conference on Cloud Computing

Technology and Science, 2011, pp.32–39.

[3] J. Dean and S. Ghemawat, ―MapReduce:

simplified data processing on large

clusters‖, in Proceedings of the 6th

Symposium on Operating Systems Design &

Implementation, Dec. 2004.

[4] J. Ekanayake, S. Pallickara, and G. Fox,

―MapReduce for dataintensive scientific

analyses‖, in Proceedings of the 2008 Fourth

IEEE International Conference on eScience,

2008, pp. 277–284.

[5] M. Moca, G. C. Silaghi, and G. Fedak,

―Distributed results checking for

MapReduce in volunteer computing‖, in

Proceedings of the 5th Workshop on

Desktop Grids and Volunteer Computing

Systems, May 2011.

[6] C. Ranger, R. Raghuraman, A. Penmetsa, G.

Bradski, andC. Kozyrakis, ―Evaluating

MapReduce for multi-core and

multiprocessor systems‖, in Proceedings of

the 13th IEEE International Symposium on

High Performance Computer Architecture,

2007, pp.13–24.

[7] L. F. G. Sarmenta, ―Sabotage-tolerance

mechanisms for volunteer computing

systems‖, Future Generation Computer

Systems, vol. 18, pp. 561–572, Mar. 2002.

[8] F. B. Schneider, ―Implementing fault-

tolerant service using the state machine

approach: A tutorial,‖ ACM Computing

Surveys, vol. 22, no. 4, pp. 299–319, Dec.

1990.

[9] George A. Reis, Jonathan Chang, Neil

Vachharajani, Ram Rangan and David I.

August, ―SWIFT: Software Implemented

Fault Tolerance‖, in Proceedings of the

Code Generation and Optimization

International Symposium, Mar. 2005.

[10] J. Yin, J.-P. Martin, A. Venkataramani, L.

Alvisi, and M. Dahlin,―Separating

agreement form execution for Byzantine

fault tolerant services‖, in Proceedings of

the 19th ACM Symposium on Operating

Systems Principles, Oct. 2003, pp. 253–267.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, R.

Katz, and I. Stoica,―Improving MapReduce

performance in heterogeneous

environments‖, in Proceedings of 8th

USENIX Symposium on Operating Systems

Design and Implementation, 2008, pp. 29–

42.

